
How To Avoid Being Eaten By a Grue:
Exploration Strategies for Text-Adventure Agents

Prithviraj Ammanabrolu, Ethan Tien, Zhaochen Luo, Mark O. Riedl
Georgia Institute of Technology

{raj.ammanabrolu, etien, zluo, riedl}@gatech.edu

Abstract
Text-based games—in which an agent interacts
with the world through textual natural language—
present us with the problem of combinatorially-
sized action-spaces. Most current reinforcement
learning algorithms are not capable of effectively
handling such a large number of possible actions
per turn. Poor sample efficiency, consequently, re-
sults in agents that are unable to pass bottleneck
states, where they are unable to proceed because
they do not see the right action sequence to pass
the bottleneck enough times to be sufficiently re-
inforced. Building on prior work using knowledge
graphs in reinforcement learning, we introduce two
new game state exploration strategies. We compare
our exploration strategies against strong baselines
on the classic text-adventure game, Zork1, where
prior agents have been unable to get past a bottle-
neck where the agent is eaten by a Grue.

1 Introduction and Background
Many reinforcement learning algorithms are designed for rel-
atively small discrete or continuous action spaces and thus
have trouble scaling. Text-adventure games—or interaction
fictions—are simulations in which both an agents’ state and
action spaces are in textual natural language. An example of
a one turn agent interaction in the popular text-game Zork1
can be seen in Fig. 1a. Text-adventure games provide us with
multiple challenges in the form of partial observability, com-
monsense reasoning, and a combinatorially-sized state-action
space. Text-adventure games are structured as long puzzles or
quests, interspersed with bottlenecks. The quests can usually
be completed through multiple branching paths. However,
games can also feature one or more bottlenecks. Bottlenecks
are areas that an agent must pass through in order to progress
to the next section of the game regardless of what path the
agent has taken to complete that section of the quest [Stolle
and Precup, 2002]. In this work, we focus on more effec-
tively exploring this space and surpassing these bottlenecks—
building on prior work that focuses on tackling the other prob-
lems.

Formally, we use the definition of text-adventure games as
seen in Côté et al. [2018] and Hausknecht et al. [2019]. These

games are partially observable Markov decision processes
(POMDPs), represented as a 7-tuple of 〈S, T,A,Ω, O,R, γ〉
representing the set of environment states, mostly determin-
istic conditional transition probabilities between states, the
vocabulary or words used to compose text commands, obser-
vations returned by the game, observation conditional proba-
bilities, reward function, and the discount factor respectively.
For our purposes, understanding the exact state and action
spaces we use in this work is critical and so we define each of
these in relative depth.

Action-Space. Solving Zork1, the cannonical text-
adventure game, requires the generation of actions consist-
ing of up to five-words from a relatively modest vocabu-
lary of 697 words recognized by the game’s parser. This
results in O(6975) = 1.64× 1014 possible actions at every
step. To facilitate text-adventure game playing, Hausknecht
et al. [2019] introduce Jericho1, a framework for interacting
with text-games. They propose a template-based action space
in which the agent first selects a template, consisting of an ac-
tion verb and preposition, and then filling that in with relevant
entities (e.g. [get] [from] ). Zork1 has 237 templates,
each with up to two blanks, yielding a template-action space
of size O(237 × 6972) = 1.15× 108. This space is still far
larger than most used by previous approaches applying rein-
forcement learning to text-based games.

State-Representation. Prior work has shown that
knowledge graphs are effective in terms of dealing with
the challenges of partial observability [Ammanabrolu and
Riedl 2019a; 2019b]. A knowledge graph is a set of 3-tuples
of the form 〈subject, relation, object〉. These triples are ex-
tracted from the observations using Stanford’s Open Informa-
tion Extraction (OpenIE) [Angeli et al., 2015]. Human-made
text-adventure games often contain relatively complex semi-
structured information that OpenIE is not designed to parse
and so they add additional rules to ensure that the correct in-
formation is parsed. The graph itself is more or less a map
of the world, with information about objects’ affordances and
attributes linked to the rooms that they are place in a map.
The graph also makes a distinction with respect to items that
are in the agent’s possession or in their immediate surround-
ing environment. The exact rules of the graph update rules
are as follows.

1https://github.com/microsoft/jericho

https://github.com/microsoft/jericho


Observation: West of House You are standing in
an open field west of a white house, with a boarded
front door. There is a small mailbox here.

Action: Open mailbox

Observation: Opening the small mailbox reveals
a leaflet.

Action: Read leaflet
Observation: (Taken) ”WELCOME TO ZORK!
ZORK is a game of adventure, danger, and low
cunning. In it you will explore some of the most
amazing territory ever seen by mortals. No com-
puter should be without one!”

(a) Excerpt from the initial stages of Zork1.

West of
House

enter
kitchentake egg

take sword
and lamp

enter cellar
and light

lamp

(b) Visualization of the quest structure as a directed
acyclic graph in Zork1 demonstrating bottlenecks. Each
node represents an action that needs to be taken to finish
the quest. Green nodes represent potential positive re-
wards. By our definition, entering the kitchen and light-
ing the lamp after entering the cellar are likely bottleneck
candidates.

Figure 1: An overall example of an excerpt and quest structure of Zork1.

We make no changes from the graph update rules used
by Ammanabrolu and Hausknecht [2020]. Candidate in-
teractive objects are identified by performing part-of-speech
tagging on the current observation, identifying singular and
proper nouns as well as adjectives, and are then filtered
by checking if they can be examined using the command
examine OBJ . Only the interactive objects not found in
the inventory are linked to the node corresponding to the cur-
rent room and the inventory items are linked to the “you”
node. The only other rule applied uses the navigational ac-
tions performed by the agent to infer the relative positions
of rooms, e.g. 〈kitchen, down, cellar〉 when the agent per-
forms go down when in the kitchen to move to the cellar.

Ammanabrolu and Hausknecht [2020] introduce the
KG-A2C,2 which uses a knowledge graph based state-
representation to aid in the section of actions in a
combinatorially-sized action-space—specifically they use the
knowledge graph to constrain the kinds of entities that can
be filled in the blanks in the template action-space. They
test their approach on Zork1, showing the combination of
the knowledge graph and template action selection resulted
in improvements over existing methods. They note that their
approach reaches a score of 40 which corresponds to a bottle-
neck in Zork1 where the player is eaten by a “grue” (resulting
in negative reward) if the player has not first lit a lamp. The
lamp must be lit many steps after first being encountered, in a
different section of the game; this action is necessary to con-
tinue exploring but doesn’t immediately produce any positive

2https://github.com/rajammanabrolu/KG-A2C

reward. That is, there is a long term dependency between ac-
tions that is not immediately rewarded, as seen in Figure 1b.
Others using artificially constrained action spaces also report
an inability to pass through this bottleneck [Zahavy et al.,
2018; Jain et al., 2019]. They pose a significant challenge
for these methods because the agent does not see the correct
action sequence to pass the bottleneck enough times. This is
in part due to the fact that for that sequence to be reinforced,
the agent needs to reach the next possible reward beyond the
bottleneck.

Our testing domain of choice is the popular text-adventure
game Zork1. It is one of the first text-adventure games and
heavily influences games released later in terms of narrative
style and game structure. The game is a dungeon crawler
where the player must explore a vast world and collect a se-
ries of treasures. It was identified by Hausknecht et al. [2019]
as a moonshot game and has been the subject of much work
in leaning agents [Yin and May, 2019; Zahavy et al., 2018;
Tessler et al., 2019; Jain et al., 2019]. Rewards are given to
the player when they collect treasures as well as when im-
portant intermediate milestones needed to further explore the
world are passed. Figure 3 and Figure 1b show us a map of
the world of Zork1 and the corresponding quest structure.

The bottleneck seen at a score of around 40 is when the
player first enters the cellar on the right side of the map. The
cellar is dark and you need to immediately light the lamp to
see anything. Attempting to explore the cellar in the dark
results in you being instantly killed by a monster known as a
“grue”.

More efficient exploration strategies are required to pass

https://github.com/rajammanabrolu/KG-A2C


bottlenecks. Our contributions are two-fold. We first intro-
duce a method that detects bottlenecks in text-games using
the overall reward gained and the knowledge graph state. This
method freezes the policy used to reach the bottleneck and
restarts the training from there on out, additionally conduct-
ing a backtracking search to ensure that a sub-optimal policy
has not been frozen. The second contribution explore how to
leverage knowledge graphs to improve existing exploration
algorithms for dealing with combinatorial action-spaces such
as Go-Explore [Ecoffet et al., 2019]. We additionally present
a comparative ablation study analyzing the performance of
these methods on the popular text-game Zork1.

2 Exploration Methods
In this section, we describe methods to explore combinato-
rially sized action spaces such as text-games—focusing es-
pecially on methods that can deal with their inherent bottle-
neck structure. We first describe our method that explicitly
attempts to detect bottlenecks and then describe how an ex-
ploration algorithm such as Go Explore [Ecoffet et al., 2019]
can leverage knowledge graphs.

KG-A2C-chained An example of a bottleneck can be seen
in Figure 1b. We extend the KG-A2C algorithm as follows.
First, we detect bottlenecks as states where the agent is unable
to progress any further. We set a patience parameter and if the
agent has not seen a higher score in patience steps, the agent
assumes it has been limited by a bottleneck. Second, when a
bottleneck is found, we freeze the policy that gets the agent
to the state with the highest score. The agent then begins
training a new policy from that particular state.

Simply freezing the policy that led to the bottleneck, how-
ever, can potentially result in a policy that is globally sub-
optimal. We therefore employ a backtracking strategy that
restarts exploration from each of the n previous steps—
searching for a more optimal policy that reaches that bottle-
neck. At each step, we keep track of a buffer of n states and
admissible actions that led up to that locally optimal state. We
force the agent to explore from this state to attempt to drive
it out of the local optima. If it is further unable to find itself
out of this local optima, we refresh the training process again,
but starting at the state immediately before the agent reaches
the local optima. If this continues to fail, we continue to it-
erate through this buffer of seen states states up to that local
optima until we either find a more optimal state or we run out
of states to refresh from, in which we terminate the training
algorithm.

KG-A2C-Explore Go-Explore [Ecoffet et al., 2019] is an
algorithm that is designed to keep track of sub-optimal and
under-explored states in order to allow the agent to explore
upon more optimal states that may be a result of sparse re-
wards. The Go-Explore algorithm consists of two phases, the
first to continuously explore until a set of promising states
and corresponding trajectories are found on the basis of total
score, and the second to robustify this found policy against
potential stochasticity in the game. Promising states are de-
fined as those states when explored from will likely result
in higher reward trajectories. Since the text games we are
dealing with are mostly deterministic, with the exception of

Zork in later stages, we only focus on using Phase 1 of the
Go-Explore algorithm to find an optimal policy. Madotto et
al. [2020] look at applying Go-Explore to text-games on a set
of simpler games generated using the game generation frame-
work TextWorld [Côté et al., 2018]. Instead of training a
policy network in parallel to generate actions used for explo-
ration, they use a small set of “admissible actions”—actions
guaranteed to change the world state at any given step during
Phase 1—to explore and find high reward trajectories. This
space of actions is relatively small (of the order of 102 per
step) and so finding high reward trajectories in larger action-
spaces such as in Zork would be infeasible

Go-Explore maintains an archive of cells—defined as a set
of states that map to a single representation—to keep track of
promising states. Ecoffet et al. [2019] simply encodes each
cell by keeping track of the agent’s position and Madotto et
al. [2020] use the textual observations encoded by recurrent
neural network as a cell representation. We improve on this
implementation by training the KG-A2C network in paral-
lel, using the snapshot of the knowledge graph in conjunction
with the game state to further encode the current state and
use this as a cell representation. At each step, Go-Explore
chooses a cell to explore at random (weighted by score to pre-
fer more advanced cells). The KG-A2C will run for a number
of steps, starting with the knowledge graph state and the last
seen state of the game from the cell. This will generate a
trajectory for the agent while further training the KG-A2C at
each iteration, creating a new representation for the knowl-
edge graph as well as a new game state for the cell. After ex-
panding a cell, Go-Explore will continue to sample cells by
weight to continue expanding its known states. At the same
time, KG-A2C will benefit from the heuristics of selecting
preferred cells and be trained on promising states more often.

3 Evaluation
We compare our two exploration strategies to the following
baselines and ablations:

• KG-A2C This is the exact same method presented in
[Ammanabrolu and Hausknecht, 2020] with no modifi-
cations.
• A2C Represents the same approach as KG-A2C but with

all the knowledge graph components removed. The state
representation is text only encoded using recurrent net-
works.
• A2C-chained Is a variation on KG-A2C-chained where

we use our policy chaining approach with the A2C
method to train the agent instead of KG-A2C.
• A2C-Explore Uses A2C in addition to the exploration

strategy seen in KG-A2C-Explore. The cell representa-
tions here are defined in terms of the recurrent network
based encoding of the textual observation.

Figure 2 shows that agents utilizing knowledge-graphs in
addition to either enhanced exploration method far outper-
form the baseline A2C and KG-A2C. KG-A2C-chained and
KG-A2C-Explore both pass the bottleneck of a score of 40,
whereas A2C-Explore gets to the bottleneck but cannot sur-
pass it.



0 10000 20000 30000 40000 50000 60000

0

10

20

30

40

KG-A2C-chained
KG-A2C-Explore

A2C-Explore
A2C-chained

(a) Learning curves for select experiments. The dotted line rep-
resents the bottleneck of lighting the lamp.

Agent Reward
A2C 32
KG-A2C 34
A2C-chained 11.8
KG-A2C-chained 40.8
A2C-Explore 38
KG-A2C-Explore 40

(b) Asymptotic reward after training until the ex-
ploration algorithms terminate. A2C and KG-
A2C are asymptotic rewards reproduced from
[Ammanabrolu and Hausknecht, 2020].

Figure 2: Ablation results on Zork1, averaged across 5 independent runs.

There are a couple of key insights that can be drawn from
these results The first is that the knowledge graph appears
to be critical; it is theorized to help with partial observabil-
ity. However the knowledge graph representation isn’t suffi-
cient in that the knowledge graph representation without en-
hanced exploration methods cannot surpass the bottleneck.
A2C-chained—which explores without a knowledge graph—
fails to even outperform the baseline A2C. We hypothesize
that this is due to the knowledge graph aiding implicitly in the
sample efficiency of bottleneck detection and subsequent ex-
ploration. That is, exploring after backtracking from a poten-
tially detected bottleneck is much more efficient in the knowl-
edge graph based agent.

The Go-Explore based exploration algorithm sees less of
a difference between agents. A2C-Explore converges more
quickly, but to a lower reward trajectory that fails to pass the
bottleneck, whereas KG-A2C-Explore takes longer to reach
a similar reward but consistently makes it through the bot-
tleneck. The knowledge graph cell representation appears to
thus be a better indication of what a promising state is as op-
posed to just the textual observation.

Comparing the advanced exploration methods when using
the knowledge graph, we see that both agents successfully
pass the bottleneck corresponding to entering the cellar and
lighting the lamp and reach comparable scores within a mar-
gin of error. KG-A2C-chained is significantly more sam-
ple efficient and converges faster. We can infer that chain-
ing policies by explicitly detecting bottlenecks lets us pass it
more quickly than attempting to find promising cell represen-
tations with Go-Explore. This form of chained exploration
with backtracking is particularly suited to sequential decision
making problems that can be represented as acyclic directed
graphs as in Figure 1b.

References
[Ammanabrolu and Hausknecht, 2020] Prithviraj Am-

manabrolu and Matthew Hausknecht. Graph constrained
reinforcement learning for natural language action spaces.
In International Conference on Learning Representations,
2020.

[Ammanabrolu and Riedl, 2019a] Prithviraj Ammanabrolu
and Mark O. Riedl. Playing text-adventure games with
graph-based deep reinforcement learning. In Proceedings
of 2019 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019, 2019.

[Ammanabrolu and Riedl, 2019b] Prithviraj Ammanabrolu
and Mark O. Riedl. Transfer in deep reinforcement learn-
ing using knowledge graphs. CoRR, abs/1908.06556,
2019.

[Angeli et al., 2015] Gabor Angeli, Johnson Premkumar,
Melvin Jose, and Christopher D. Manning. Leveraging
Linguistic Structure For Open Domain Information Ex-
traction. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), 2015.

[Côté et al., 2018] Marc-Alexandre Côté, Ákos Kádár,
Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine,
James Moore, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler.
Textworld: A learning environment for text-based games.
CoRR, abs/1806.11532, 2018.

[Ecoffet et al., 2019] Adrien Ecoffet, Joost Huizinga, Joel
Lehman, Kenneth O. Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. CoRR,
abs/1901.10995, 2019.

[Hausknecht et al., 2019] Matthew Hausknecht, Prithviraj
Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan.
Interactive fiction games: A colossal adventure. CoRR,
abs/1909.05398, 2019.



[Jain et al., 2019] Vishal Jain, William Fedus, Hugo
Larochelle, Doina Precup, and Marc G. Bellemare. Al-
gorithmic improvements for deep reinforcement learning
applied to interactive fiction. CoRR, abs/1911.12511,
2019.

[Madotto et al., 2020] Andrea Madotto, Mahdi Namazifar,
Joost Huizinga, Piero Molino, Adrien Ecoffet, Huaixiu
Zheng, Alexandros Papangelis, Dian Yu, Chandra Khatri,
and Gokhan Tur. Exploration based language learning for
text-based games. CoRR, abs/2001.08868, 2020.

[Stolle and Precup, 2002] Martin Stolle and Doina Precup.
Learning options in reinforcement learning. In Proceed-
ings of the 5th International Symposium on Abstraction,
Reformulation and Approximation, page 212–223, Berlin,
Heidelberg, 2002. Springer-Verlag.

[Tessler et al., 2019] Chen Tessler, Tom Zahavy, Deborah
Cohen, Daniel J Mankowitz, and Shie Mannor. Action
assembly: Sparse imitation learning for text based games
with combinatorial action spaces. CoRR, abs/1905.09700,
2019.

[Yin and May, 2019] Xusen Yin and Jonathan May. Com-
prehensible context-driven text game playing. CoRR,
abs/1905.02265, 2019.

[Zahavy et al., 2018] Tom Zahavy, Matan Haroush, Nadav
Merlis, Daniel J Mankowitz, and Shie Mannor. Learn
what not to learn: Action elimination with deep reinforce-
ment learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31,
pages 3562–3573. Curran Associates, Inc., 2018.

A Appendix
A.1 Hyperparameters
Hyperparameters used for our agents are given below. Pa-
tience and buffer size are used for the policy chaining method
as described in Section 2. Cell step size is a parameter used
for Go-Explore and describes how many steps are taken when
exploring in a given cell state. Base hyperparameters for KG-
A2C are taken from [Ammanabrolu and Hausknecht, 2020]
and the same parameters are used for A2C.

Agent Hyperparameters
A2C-chained patience=35

buffer size n=40
batch size=32

KG-A2C-chained patience=35
buffer size n=40
batch size=32

A2C-Explore cell step size=30
batch size=1

KG-A2C-Explore cell step size=30
batch size=1



Start here
Kitchen +10

Egg +5

Cellar +25

Painting +4

Figure 3: Map of Zork1 annotated with rewards. These rewards correspond to the quest structure seen in Figure 1b.


	Introduction and Background
	Exploration Methods
	Evaluation
	Appendix
	Hyperparameters


