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Abstract
This paper contributes a detailed analysis of the
architecture of Ha and Schmidhuber (2018). The
original paper proposes an architecture comprising
3 main components: a “visual” module, a “mem-
ory” module; and a controller. As a whole, such ar-
chitecture performed well in challenging domains.
We investigate how each of the aforementioned
components contributes individually to the final
performance of the system. Our results shed addi-
tional light on the role of the different components
in the overall behavior of the agent, and illustrate
how the different design options affect the behavior
of the resulting agent. 1

1 Introduction
In recent years, reinforcement learning (RL) has been the fo-
cus of increasing interest, largely due to the impressive suc-
cesses in video games (Mnih et al., 2015), classical games
(Silver et al., 2018) and control (Lillicrap et al., 2016), among
others. RL algorithms can roughly be categorized as model-
free and model-based (Sutton and Barto, 2018). And while
most of the aforementioned success stories rely on model-
free approaches, it is a well-known fact that model-based ap-
proaches typically exhibit better sample efficiency and are
more transferable (Wang et al., 2019).

In a recent work, Ha and Schmidhuber propose a model-
based approach inspired by human mental models that at-
tained competitive performance in two difficult tasks (Ha and
Schmidhuber, 2018). The proposed approach includes two
key modules (see Fig. 1): a visual processing module V that,
in abstract terms, translates the perceptual information of the
agent to an internal representation; and a memory module M
that corresponds to the agent’s internal model of the world’s
dynamics. Based on the information from these two modules,
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Figure 1: The model of Ha and Schmidhuber (2018) (adapted from
the original). The model comprises a world model and a controller
C. The world model, in turn, comprises a visual processing compo-
nent (V) and a memory component (M).

the paper goes on to show that a simple controller is able to
attain state-of-the-art results in these two tasks.

In this paper, we depart from the work of Ha and Schmid-
huber (2018) and investigate the impact of the different model
components in the observed performance of the agent. Our
analysis focuses on one of the domains considered in the orig-
inal paper—the carRacing-v0 domain from Open AI gym
(Brockman et al., 2016), depicted in Fig. 1, on the left—
and considers how different design choices contributed (pos-
itively or negatively) to the results from the original paper.

2 Background
This section provides an overview of the different modules
used in the model of Ha and Schmidhuber (2018).

2.1 Variational autoencoders
Variational autoencoders (VAEs) are generative models orig-
inally proposed in the work of Kingma and Welling (2014).
A VAE is a latent variable model, assuming that the data of
interest, hereby denoted as x, can be explained by some set
of non-observed (latent) variables z. In other words,

p(x) =

∫
Z
pφ(x | z)p(z)dz,
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Figure 2: The variational autoencoder (Kingma and Welling, 2014).

Figure 3: Example reconstruction results using the trained VAE.

where p(z) is some prior distribution over the latent variables.
Training a VAE thus consists in computing pφ(x | z).

A standard VAE has the structure depicted in Fig. 2 and
includes two main parts: an encoder and a decoder. The en-
coder is a neural network that, given an input x, outputs a
distribution qθ(z | x) over the space of latent variables. In
a sense, it “encodes” the input x as a low-dimensional rep-
resentation z. The decoder, in turn, is a neural network that,
given a latent vector z, outputs the distribution pφ(x | z).
The, given a dataset {xn, n = 1, . . . , N}, the whole encoder-
decoder network is trained to minimize the loss

L(θ, φ) = −
N∑
n=1

Ez∼qθ(xn) [log pφ(xn | z)] + KL[qθ(xn)||p].

The first term measures the reconstruction error—the ability
of the model to reconstruct xn given a code z sampled from
qθ(· | xn). The second works as a regularization term, keep-
ing qθ as close as possible to the prior p.

Figure 3 illustrates the reconstruction ability of the VAE
trained with the data from the carRacing-v0 scenario. In the
model of Ha and Schmidhuber (2018), the VAE is responsi-
ble for processing the visual inputs x and encoding them as
a low-dimensional representation, z. Specifically, the output
of the encoder is an input-conditioned Gaussian distribution
qθ(· | x) over latent variables, where the parameters θ corre-
spond to the mean µ and variance σ of the distribution.

2.2 MDN-RNN
A mixture density network (MDN) is a probabilistic model
originally proposed in the work of Bishop (1994). In an
MDN, we model a conditional distribution p(y | x) as a
Gaussian mixture, i.e., we assume that

p(y | x) =
M∑
m=1

πm(x)N (y | µm(x), σm(x)),

where the scalars πm are known as the mixture co-
efficients, and µm and σm are the parameters of the
mth component of the mixture. Then, given a dataset
{(xn,yn), n = 1, . . . , N}, the MDN is trained to minimize
the negative log-likelihood of the data.
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Figure 4: Pictorial representation of the mixture density network
(Bishop, 1994) in the model of Ha and Schmidhuber (2018).

Figure 5: Predictions using the trained RNN. In each column, an
input image xt is passed through the VAE to get a code, zt. The
pair (zt, at) is used in the MDN-RNN to generate zt+1 which is
then turned into an image x̂t+1 using the VAE decoder. The top row
shows the image xt+1, while the bottom row shows x̂t+1.

In the model of Ha and Schmidhuber (2018), the MDN
takes as input, at each time step, the latent vector zt coming
out of the VAE and the action at of the agent, and the output is
the next latent vector, zt+1. In other words, the MDN learns
the distribution p(zt+1 | zt, at). Since the role of the MDN
in the overall model is to capture the temporal dynamics of
zt, the neural network in Fig. 4 is actually a recurrent neu-
ral network—namely an LSTM (Hochreiter and Schmidhu-
ber, 1997)—computing a prediction for the next latent vector,
zt+1, as a function of the current latent vector, zt, the agent’s
current action, at, and the history up to time t, encoded in
the RNNs hidden state ht. A similar MDN-RNN architecture
has been previously used for successful sequence modeling
and generation (Graves, 2013). Figure 5 illustrates the pre-
dictions from the trained MDN-RNN in the carRacing-v0
scenario.

2.3 Controller
The model comprising the VAE and the MDN-RNN network
are used to determine the action to be executed by the agent.
Namely, the VAE provides in zt a compact representation of
the present perception of the agent, while the MDN-RNN hid-
den state, ht, provides a compact representation of the history
of the agent. The two are then used in a controller C to com-
pute the action at as

at = σ(Kf(zt,ht;w) + b), (1)

where σ is a squashing function, f is a non-linear function pa-
rameterized byw,K is a gain matrix and b is a bias term. The
parameters w, gains and bias are determined using CMA-
ES (Hansen and Ostermeier, 2001), an evolutionary approach
widely used in RL and robotics (Stulp and Sigaud, 2012).

In the remainder of the paper we investigate the impact of
each component discussed above in the overall performance
of the agent, as well as that of several design choices:



• In the original paper, the visual model outputs a dis-
tribution qθ(· | x), and the latent vector z is sampled
from this distribution. We also consider an alternative
approach, in which the visual module returns the mean
of the distribution qθ(· | x). We denote these two alter-
natives as Vsampled and Vmean, respectively.

• Tallec et al. (2018) provided empirical evidence that
the performance of Ha and Schmidhuber (2018) can be
replicated by using an untrained MDN-RNN. Therefore,
in our analysis, we look at the performance of the agent
with trained and untrained memory models (i.e., where
the MDN-RNN weights are random). We denote these
two alternatives as Mtrained and Muntrained.

• Finally, in terms of the controller, we consider three dis-
tinct possibilities, corresponding to increasingly com-
plex controllers. In the simplest controller, the action
at considers that both σ and f correspond to the iden-
tity function. The action is, therefore, an affine function
of zt and ht. The second controller, corresponding to
the one of Ha and Schmidhuber (2018), considers only
f to be the identity function. Finally, the third controller
considers only σ to be the identity function. We denote
the three alternatives as Clinear, Csquash and Cnonlinear.

In the continuation, we report the results obtaining by con-
sidering different combinations of V , M and C, as described
above. Due to space limitations we omit the description of
the network architectures used and training methods, and re-
fer to the supplementary material for details. In the upcom-
ing discussion, HS denotes the model of Ha and Schmidhuber
(2018), corresponding to Vsampled +Mtrained + Csquash.

3 Comparative analysis
In this section we report the results of our empirical analysis
of the model proposed by Ha and Schmidhuber (2018). We
start, in Table 1, by presenting the results of HS and several
variations thereof, as well as those of other approaches from
the literature. For the sake of comparison, we also present the
results of two baselines: the performances of an untrained HS
agent and a controller optimized to work directly on images
from the game. It is worth mentioning that variation Vmean +
Muntrained + Clinear was previously studied by Tallec et al.
(2018), while Vmean + Mtrained + Clinear was investigated
by (Risi and Stanley, 2019). In the continuation, we discuss
some additional variations.

3.1 Replicating HS
We started by replicating the results of Ha and Schmidhuber
(2018). In the original work, the model was trained for 1, 800
generations. In the results we report, the model was trained
for only 140 generations. The differences between our and
the original HS implementation are depicted in Fig. 6: our
performance is similar to the one reported in the original pa-
per, although exhibiting a larger variance.

3.2 Perceptual model
We compare in Table 2 the performance obtained when us-
ing the mean of qθ against that obtained using samples of

Table 1: Performance of different approaches in the
carRacing-v0 domain. A policy is considered to
clear the game if the average score is above 900 (en-
tries in bold).

Method Avg. Score

Prieur et al.† 343 ± 18
Guan et al.†† 893 ± 41
Jang et al.‡ 591 ± 45
Gaier and Ha (2019) 893 ± 74
Tang et al. (2020) 914 ± 15
CEOBillionaire (gym leaderboard) 838 ± 11

HS (Ha and Schmidhuber, 2018) 906 ± 21
Vmean +Muntrained + Clinear 852 ± 110
Vmean +Mtrained + Clinear 901 ± 43

Untrained HS 95 ± 81
Controller on image 735 ± 139

† https://tinyurl.com/y73377bq.
†† https://github.com/AMD-RIPS/RL-2018.
‡ https://goo.gl/VpDqSw.
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Figure 6: Comparison between the original results of HS and ours.

Table 2: Comparison of the average score of several variations of
HS, differing in the visual information available to the agent.

Method Cropped Full

HS 853 ± 83 881 ± 40
Vmean +Mtrained + Csquash 869 ± 86 900 ± 35
Vsampled +Mtrained + Clinear 801 ± 163 835 ± 93
Vmean +Mtrained + Clinear 901 ± 43 920 ± 29

qθ. Our results clearly show that the use of the mean leads
to better performance of the agent, which is to be expected.
In fact, considering the mean of qθ—rather some potentially
low-probability sample thereof—will generally improve the
agent’s ability to select a better action.

We also compare the performance obtained when we
change the way the visual information is used—a linear vs a
squashed controllerC. Interestingly, if qθ is sampled,Csquash

leads to better performance, while in the case of the mean of
qθ, Clinear performs best. This suggests that the squashing

https://tinyurl.com/y73377bq
https://github.com/AMD-RIPS/RL-2018.
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Table 3: Comparison of the average score obtained by removing
components from HS.

Method Avg. Score

Vsampled + Csquash 629 ± 102

Vmean + Clinear 826 ± 117
Vmean + Cnonlinear 872 ± 72

Vmean +Muntrained + Clinear 852 ± 110

Mtrained + Clinear 852 ± 113
Muntrained + Clinear 754 ± 143

Table 4: Comparison of the average score obtained by considering a
visual module that processes a stacked sequence of 4 frames, instead
of a single frame. Vmean, k−skip indicates the 4 stacked frames are
obtained by skipping k frames in the real game.

Method Avg. Score

Vmean, 0−skip + Clinear 900 ± 54
Vmean, 1−skip + Clinear 885 ± 48
Vmean, 3−skip + Clinear 734 ± 159
Vmean, 0−skip + Cnonlinear 902 ± 31

function in the output of the controller attenuates the noise
coming out from sampling qθ.

Finally, in the original work of Ha and Schmidhuber
(2018), a bar at the bottom of the screen containing informa-
tion about speed and acceleration is cropped from the model’s
visual input. We compare the performance obtained when
using such cropped images against that obtained from the
game’s full image. As seen in our results, the use of the lower
bar does improve the performance of the agent. Most ap-
proaches reported in the upper part of Table 1 use the full
game image.

3.3 Ablation study
We now report in Table 3 the performance obtained by re-
moving different components from the model in Fig. 1. We
start by considering only the visual module. The first re-
sult (Vsampled + Csquash) corresponds to the configuration of
HS without the memory module, and is the worst perform-
ing configuration. Following on our conclusions from Sec-
tion 3.2, we can again observe that the use of the mean of
qθ or the use of a full game image both contribute to an im-
proved performance. Finally, it is worth noting that none of
the memoryless configurations is able to solve the game.

We also consider the impact of the memory module. Fol-
lowing Tallec et al. (2018), we analyze both the impact of
considering only the memory module and the performance
obtained with an untrained memory module. The results sug-
gest that the memory module provides the agent with the tem-
poral information that is lacking in the visual information.

To confirm such interpretation, we considered a variation
of the original model, where the vision module is trained not
with single frame but with stacked sequence of frames, thus
(implicitly) including temporal information in the visual per-
ception. The results are reported in Table 4.

Our results show that, in fact, by including the multiple
frames in the visual module, the agent is again able to com-

Table 5: Comparison of the average score obtained when the model
is trained with data from a good driving policy.

Method Avg. Score

Vmean + Clinear 836 ± 78
Vmean +Mtrained + Clinear 910 ± 34

plete the game, confirming the intuition that, in fact, the role
of the memory module is to complement the visual perception
with temporal information.

3.4 Training policy
To conclude our analysis, we note that the HS model is trained
with a batch of images from the game obtained with a random
driving policy. We thus conducted an experiment to assess
the impact that the policy used to sample the environment has
in the model learned by the agent and, consequently, in the
performance of the agent. The results are reported in Table 5.
Our results clearly show that, by simply considering a better
policy, the performance of the agent considerably improves.

4 Conclusion and Future Work
In this paper we conducted an empirical analysis of the archi-
tecture of Ha and Schmidhuber (2018). Our results highlight
the role of each component of the model in the overall per-
formance of the agent. One improvement suggested by our
results is with respect with the policy used to sample the data
used to train the model. We refer to the supplementary mate-
rial for additional discussions.

References
C. Bishop. Mixture density networks. Technical Report NCRG/94/004, Neural Computing Research

Group, Aston University, February 1994.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAI
Gym. CoRR, abs/1606.01540, 2016.

A. Gaier and D. Ha. Weight agnostic neural networks. In Advances in Neural Information Processing
Systems 32, pages 5365–5378, 2019.

A. Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.

D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In Advances in Neural
Information Processing Systems 31, pages 2450–2462, 2018.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evo-
lutionary Computation, 9(2):159–195, 2001.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

D. Kingma and M. Welling. Auto-encoding variational Bayes. In Proc. 2nd International Conference
on Learning Representations, 2014.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. In Proc. 4th Int. Conf. Learning Representations, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller, A.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

S. Risi and K. Stanley. Deep neuroevolution of recurrent and discrete world models. Proc. 2019
Genetic and Evolutionary Computation Conference, pages 456–462, 2019.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-
maran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement learning
algorithm that masters chess, Shogi, and Go through self-play. Science, 362:1140–1144, 2018.

F. Stulp and O. Sigaud. Path integral policy improvement with covariance matrix adaptation. In Proc.
29th Int. Conf. Machine Learning, pages 1547–1554, 2012.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition, 2018.

C. Tallec, L. Blier, and D. Kalainathan. Reproducing “World Models”: Is training the recurrent net-
work really needed? Available at https://ctallec.github.io/world-models/, 2018.

Y. Tang, D. Nguyen, and D. Ha. Neuroevolution of self-interpretable agents. CoRR, abs/2003.08165,
2020.

T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba.
Benchmarking model-based reinforcement learning. CoRR, abs/1907.02057, 2019.

https://ctallec.github.io/world-models/


A Full comparative results
A.1 Ablation study additional results

Table 6: Comparison of average score of our ablation experiments on both the game’s cropped and full image

Method Cropped Full
Vmean + Clinear 836 ± 78 877 ± 44
Vsampled + Csquash 629 ± 102 813 ± 102
Vmean + Cnonlinear 872 ± 72 881 ± 79

Mtrained + Clinear 852 ± 113 894 ± 25

Muntrained + Clinear 754 ± 143 702 ± 121
Vmean +Muntrained + Clinear 852 ± 110 886 ± 55

A.2 Improved Sample Policy
The VAE and MDN-RNN components are trained with a batch of images from the game sampled with a random driving policy.
We thus considered training these components with a mix of images sampled with both a random policy and an expert policy,
by which it could help these components capture better features and dynamics of the environment. This improved sampling
method we denoted as Improved sample.

Table 7: Comparison of average score obtained with a Vmean component trained with images with different sampling methods on the game’s
full image

Method Cropped Full
Vmean + Clinear 826 ± 117 877 ± 44
Vmean + Clinear (Improved sample) 836 ± 78 906 ± 51

Table 8: Comparison of average score and steps to reach a score of 900 obtained by training the VAE and MDN-RNN components with images
with different sampling methods

Method Avg. Score 900 in step
Vmean +Mtrained + Clinear (Full) 920± 29 72
Vmean +Mtrained + Clinear (Crop) 901± 43 119

Vmean +Mtrained + Clinear (Full) (Improved sample) 913± 34 36
Vmean +Mtrained + Clinear (Crop) (Improved sample) 910± 34 35

We can notice that by using a better sampling method for training the HS ”visual” and ”memory” components tends to
achieve better results, and reach them faster.
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