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Abstract
We present a model-based recurrent reinforcement
learning algorithm for the financial portfolio opti-
mization problem. Due to the analytical form of
the expressions, the policy gradient can be directly
estimated through a stochastic computation graph
without relying on Monte Carlo rollout or a sepa-
rate critic. In addition, the model possesses a cer-
tain permutation invariance that leads to a form of
model universality, and allows a multi-task approach
for the problem, with provable error bounds. We
show that the coupling of the recurrent learning with
multi-task training offers faster convergence and sig-
nificantly higher returns than competing methods.

1 Introduction
While deep reinforcement learning (RL) has been successful
in solving many challenging sequential decision-making tasks,
its successes have been mostly in domains where one has ac-
cess to huge amount of training data, often through a simulator.
In domains with limited real data and no access to a simulator,
sequential decision making in large, continuous state-action
space remains a challenging problem.

We address the problem of financial portfolio optimiza-
tion, where a policy adaptively allocates a given fund into
a number of assets in order to maximize the total expected
return. Traditionally, learning approaches to this task have
been model-based, building a predictive model for future asset
prices and deriving the optimal allocation using the model
predictions. Such approaches are sensitive to the quality of
the chosen models, often too simplistic for the real world.

Recently, model-free deep RL has been successfully applied
to this problem [Jiang et al., 2017; Ye et al., 2020], where one
learns a policy that prescribes the next allocation given the
current state. The state contains observable features, such as
the price history of each asset as well as other information that
may be relevant. This is therefore a task with a potentially
high-dimensional continuous state-action space.

Deep RL policies, however, typically require a large amount
of data to train. Most approaches that deal with continuous
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action spaces are based on estimating a policy gradient. Pol-
icy gradient methods either use Monte Carlo sampling (e.g.
REINFORCE [Williams, 1992] or rely on learning a separate
critic (e.g. A3C [Mnih et al., 2016], DDPG [Lillicrap et al.,
2016]). The former typically has low sample-efficiency and
high variance in estimating the gradient while the latter may
suffer from bias in the critic.

Our approach avoids these problems by exploiting two prop-
erties that can be found in a number of sequential decision-
making problems, and particularly in portfolio optimization.
The first is the fact that in many practical scenarios, the actions
do not impact the external state, in this case given by the price
movements of the assets. In particular, the state consists of
two parts:

• an internal part that stores the current asset allocation,
whose transition model is known;

• an external part that contains all other market information
such as the prices, whose transition model is unknown
but is independent of the policy.

The reward model, taking into account the transaction costs,
is also known. We show that under this setting, one can esti-
mate the policy gradient directly without the need for Monte
Carlo rollout or a separate critic, through the use of stochastic
computation graphs.

Secondly, the resource allocation problem can be shown to
have a certain form of permutation invariance. This property
implies that one may substitute different sets of samples as
input to the learning process. As instantiated on the portfolio
optimization problem, it means that training a strategy on one
portfolio universe can be done using samples from a different
portfolio universe. We prove a bound on the error induced by
this type of multi-task setting. This has a substantial benefit
to the portfolio optimization problem: the number of samples
available for training a deep network is increased dramatically;
as such, our method is much more efficient in making use of
real market data. We demonstrate empirically the considerable
benefit accrued through leveraging this property.

Additionally, the property can be taken one step further to
arrive at a universality feature of the policy. Specifically,
leveraging both the permutation invariance and the quasi-
independence across the instruments allows applying the
trained policy to a portfolio universe of any size, provided
that an order-preserving transformation is used.



2 Background and related work
Our approach incorporates a partial, known model into the
learning process. This is different from most existing model-
based approaches – which focus on first learning an approxi-
mate transition and/or reward model, then incorporating the
model into the RL process through planning or sampling [Sut-
ton, 1991; Chua et al., 2018; Hafner et al., 2019]. In certain
cases, the forms of the learned models (e.g. gaussian pro-
cesses) are chosen such that they are amenable to computing
analytical gradients [Deisenroth and Rasmussen, 2011]. In
the special case of the LQR framework, a close-form optimal
policy can be derived analytically.

Closest to ours is the work by [Bueno et al., 2019], where
stochastic computation graphs [Schulman et al., 2015] are
used to compute the policy gradients directly by making use of
the re-parameterization trick. They empirically demonstrated
their approach on a number of stochastic control tasks where
the exact transition and cost models are available.

Our work is also related to the literature on multi-task learn-
ing [Sharma et al., 2018; D’Eramo et al., 2020]. However,
existing works on multi-task learning are primarily concerned
with learning of shared representations, regardless of the the
similarity or dissimilarity between tasks. In our approach,
we leverage multi-task learning to increase the number of
available training samples and consequently improve learning
performance, and we provide theoretical results to motivate
our technique.

3 Multi-Task Learning
We take a multi-task learning approach to the financial port-
folio optimization problem where each task corresponds to
trading a particular set of assets, drawn from a large universe
of assets. Our approach is based on the observation that even
though the exact transition dynamics in each task is not iden-
tical, they share enough similarity such that individual assets
are almost interchangeable and that one can learn a single
strategy that works well in any of the tasks, making use of
the combined data from all the tasks. We first provide some
theoretical results that motivate this approach.

Our main result is an extension of existing results from
[Lazaric et al., 2012], where a finite-sample error bound is
derived for the LSPI algorithm on a single task. In particu-
lar, they derive a high-probability bound on the performance
difference between the final learned policy and the optimal
policy. The bound is in the form (c1 + c2

1√
N

) where c1 and
c2 are constants that depend on the task and the chosen feature
space while N is the number of training examples. We show
that as long as the tasks are ε-close to each other (with respect
to some similarity measure), the error bound can be in the
form (c1 + c2

1√
TN

+ c3ε), where T is the number of tasks,
N the number of examples per task, and c3 a task-dependent
constant. As long as ε is small, we can therefore benefit from
the much larger set of TN training examples.

For a measurable space with domain X , let S(X ) denote
the set of probability measures over X , and B(X ;L) denote
the space of bounded measurable functions with domain X
and bound 0 < L < ∞. For a measure ρ ∈ S(X ) and a
measurable function f : X → R, we define the l2(ρ)-norm

of f , ‖f‖ρ, and for a set of N points X1, · · · , XN ∈ X , we
define the empirical norm, ‖f‖N as

‖f‖2ρ =

∫
f(x)2ρ(dx) and ‖f‖2N =

1

N

N∑
n=1

f(Xt)
2.

We also define ‖f‖∞ = supx∈X |f(x)| to be the supremum
norm of f .

We consider a set of MDPs indexed by t. Each MDP is
denoted by a tuple Mt = 〈X ,A, Rt, Pt, γ〉, where X is a
common state space and is a bounded closed subset of the
s-dimensional Euclidean space, A is a common finite action
space, Rt : X × A → R is a task specific reward function
that is uniformly bounded by Rmax, Pt is a task specific transi-
tion kernel such that Pt(·|x, a) is a distribution over X for all
x ∈ X and a ∈ A, and γ ∈ (0, 1) is a common discount factor.
We consider deterministic policies denoted by π : X → A.
For a given policy π, the MDPMt is reduced to a Markov
chainMπ

t = 〈X , Rπt , Pπt , γ〉 with reward function Rπt (x) =
Rt(x, π(x)), transition kernel Pπt (·|x) = Pt(·|x, π(x)), and
stationary distribution ρπt . The value function V πt is de-
fined as the unique fixed-point of the Bellman operator T πt :
B(X ;Vmax = Rmax/(1−γ))→ B(X ;Vmax), which is defined
by (T πt V )(x) = Rπt (x) + γ

∫
X P

π
t (dy|x)V (y).

To approximate the value function V , we use a linear ap-
proximation architecture1 with parameters α ∈ Rd and basis
functions ϕi ∈ B(X ;L) for i = 1, · · · , d. We denote by
ϕ(·) = (ϕ1(·), · · · , ϕd(·))T ∈ Rd the feature vector and by
F the linear function space spanned by the basis functions ϕi.
Thus, F = {fα | α ∈ Rd and fα(·) = ϕ(·)Tα}.

In addition to the assumptions proposed in [Lazaric et al.,
2012], we extend the definition of second-order discounted-
average concentrability, a smoothness property of the transi-
tion kernel originally proposed in [Antos et al., 2008], and
define the notion of first-order discounted-average concentra-
bility. The latter will be used in our main result.
Assumption 1. Given the target distribution σ ∈ S(X ) and
an arbitrary sequence of policies {πm}m≥1, let

cσ,µ = sup
π1,...,πm

∥∥∥∥d(µPπ1 . . . Pπm)

dσ

∥∥∥∥ .
We define the first and second order discounted-average con-
centrability of future-state distributions as

C ′σ,µ = (1− γ)
∑
m≥0

γmcσ,µ(m),

C ′′σ,µ = (1− γ)2
∑
m≥1

mγm−1cσ,µ(m),

and we assume that C ′σ,µ, C
′′
σ,µ <∞.

Theorem 1. LetM = 〈X ,A, R, P, γ〉 be an MDP with re-
ward function R and transition kernel P . Denote its Bellman
operator by

(T πV )(x) = Rπ(x) + γ

∫
X
Pπ(dy|x)V (y).

1Our results assume linear architecture, finite action space, and
use LSPI for the purpose of deriving analytical results, our actual
implementation is via non-linear architectures, continuous action
space and a recurrent learning algorithm.



Given a policy π, define the Bellman difference operator be-
tweenMt andM to be Dπt V = T πt V − T πV . Apply least
squares policy iteration (LSPI) toM, by generating, at each
iteration k, a path fromM of size n, where n satisfies Lemma
4 in [Antos et al., 2008]. Let V−1 ∈ F̃ be an arbitrary ini-
tial value function, V0, · · · , VK−1 (Ṽ0, · · · , ṼK−1) be the se-
quence of value functions (truncated value functions) gener-
ated by LSPI after K iterations, and πk be the greedy policy
w.r.t. the truncated value function Ṽk−1. Suppose also that

‖Dπt V π‖µ ≤ ε ∀ π, and ‖Dπk
t Ṽk−1‖µ ≤ ε ∀ k.

Then, with probability 1− δ (with respect to the random sam-
ples), we have that ‖V π

∗
t

t − V πK
t ‖σ. ≤ Õ(

√
C ′′σ,µ + 1√

N
+

ε
√
C ′σ,µ).

4 Portfolio Optimization
Consider a universe of assets I. Let si,n denote the state
of asset i at time n. The state may include multiple price
components, e.g. open, high, low, close, over time period n.
Let pi(si,1) denote the initial state distribution of asset i and
assume that si,n evolves according to transition probability
kernel pi(si,n+1|si,n). Furthermore, assume that we are given
a dataset of |I| state trajectories, one per asset, where each
trajectory τi = {si,1, . . . , si,N} for asset i has length N .

Our goal is to solve a portfolio optimization problem over a
subset of assets It ⊆ I. Consider t as an arbitrary indexing
variable, each t will correspond to a task. We model our prob-
lem as an MDPMt = 〈X ,A, Rt, Pt, γ〉. At each time step n,
one observes the state xn = ((si,n)i∈It , (wi,n−1)i∈It), and
takes an action wn = (wi,n)i∈It , where wi,n is the share of
the portfolio allocated to asset i. As such, the actions must
satisfy constraints: 0 ≤ wi,n ≤ 1 and

∑
i∈It wi,n = 1. The

probability transition kernel is a function of the asset price
transition kernels. Given the data trajectories (τi)i∈It , our
objective is to maximize:

Jt(µ) =

N∑
n=1

γn−1Rt(xn, µ(xn)).

In settings for which N is small, it is difficult to learn a policy
that generalizes well.

In practice, the number of assets |I| with data available is
likely to be significantly greater than the number of assets
|It| which the optimization is concerned with. We leverage
Theorem 1 to propose an algorithm for exploiting the data
available for assets I \ It. In particular, we consider a set
of portfolio optimization problems, indexed by t = 1, . . . , T ,
where each problem optimizes over a different set of assets
It ⊆ I . We model each portfolio optimization problem t as an
MDPMt. Instead of solving each MDPMt independently,
we propose to solve them jointly, by sampling subsequences
of trajectories from all the MDPs. The following corollary is
a consequence of Theorem 1.
Corollary 1. Let [T ] be a set of similar tasks such that dis-
tance from the average MDP, given by

(T πV )(x) =
1

T

T∑
t=1

Rπt (x) + γ

∫
X

1

T

T∑
t=1

Pπt (dy|x)V (y),

is bounded by ε as defined in Theorem 1. Let N be the number
of samples available in each task. Then, the suboptimality of
the policy for each task obtained by solving the average MDP,
using NT samples from all tasks, is Õ(1/

√
NT ) + Õ(ε) +C.

5 Recurrent Portfolio Optimization
A portfolio is specified by the vector wn = 〈win〉i=1:m where
n is the time period. The portfolio vector is defined in the
manifold S = {w = 〈wi〉 : wi ≥ 0 ∀i,

∑
i w

i = 1}. Each
portfolio is characterized by a set of weights {win} represent-
ing the portion of the investment in asset i at time n. We
denote yn to be m-dimensional relative price vector whose
component yin is the ratio of the price at trading period n to
that of the previous trading period n− 1 for the asset i.

During time period n, a portfolio strategy can trade (buy
or sell) assets to reallocate the portfolio weights from wn to
w′n ∈ S. We consider a transaction cost c. Denote c the vector
of transaction costs for trading each asset. We define the first
component c(0) = 0 as a no-cost option corresponding to
cash and c(i) = c,∀i > 0. Because of transaction costs, the
portfolio is reduced by a factor of (1− f(wn,w

′
n)).

We consider the reward for reallocation w′n to be defined
as the logarithmic rate of return rn = log(w′n · yn+1)(1 −
f(wn,w

′
n)). An important feature of our recurrent learning

approach is that one can compute f(wn,w
′
n) in closed form.

Our objective is to optimize a trading policy π to reallocate
the portfolio weights wn at every time step t to maximize a
global utility function defined over the planning period. In
summary, the Markov Decision Process is given by:

• The state sn at time n comprising portfolio weights wn.

• The trading policy π as a function of historical prices
〈yn−k〉k=0:K and current weights wn. The policy out-
puts a reallocation of weights w̃n. We use Hadamard
product� and dot product · to incorporate the transaction
cost c into the portfolio rebalancing. Firstly, we liquid-
ify the portfolio weight wn into a value-in-cash weight
wc
n = wn�(1−c). Let vcn =

∑
iw

c(i) be the total port-
folio value-in-cash. We define the buy and sell quantities
by w̃n as follows: u+

n = max(w̃nv
c
n −wc

n, 0) ; u−n =
max(wc

n− w̃nv
c
n, 0). The post-trade weight can be com-

puted as w̄n = (wc
n + (1 − c) � u+

n − u−n )� ( 1
(1−c) ),

w′n = normalize(w̄n), in which the normalize(•) op-
erator divides all components of a vector by the sum of its
components. The total transaction cost can be quantified
by f(wn,w

′
n) = c

1−c · u
+
n + c

1−c · u
−
n .

• The reward for reallocation w′n is defined as the logarith-
mic rate of return rn = log(w′n ·yn+1)(1−f(wn,w

′
n)).

• Given the new price yn+1, the portfolio weight at the
next iteration is wn+1 = normalize(w′n � yn+1).

The key observation is that in this model, all expressions
are in analytic form, and as such we can define a recurrent
reinforcement learning approach to directly optimize π. The
models for each instrument are independent with the exception
that they form a probability simplex. We exploit this feature



to obtain a universality property. Through the use of an order-
preserving transformation, we can train a trading strategy on
T instruments and then apply the same trading strategy to
any number T ′ instruments. A common order-preserving
transformation to apply to the strategy for T ′ instruments
is the softmax operator. We illustrate the performance on
universally-trained instances in the next section.

6 Experiments
The experiments have been run on public data from 400 of
the S&P500 stocks from 2005 to 2019. Data from 2005 to
2017 was used for training while 2018 and 2019 were re-
served for testing. To test the transferability amongst different
tasks, we conduct 2 sets of experiments. First, we consider
the target universe consisting of 8 HighTech stocks from [Ye
et al., 2020], [Ding et al., 2014], namely ’GOOG’, ’NVDA’,
’AMZN’, ’AMD’, ’QCOM’, ’INTC’, ’MSFT’, ’AAPL’. Then,
to illustrate the permutation invariance in practice, we augment
the training data with portfolios formed by randomly selecting
other stocks from the S&P500. Second, to show the trans-
ferability of policies trained on portfolios of different sizes,
we use historical data from 10 random portfolio universes for
training and evaluate on 10 different random universes on the
test set. We use a replay buffer and a CNN similar to that of
[Jiang et al., 2017]. The neural network trading policy uses
the latest 30-day historical prices. We consider the transaction
cost to be 0.2%.

Figure 1 illustrates two aspects of the our recurrent learning
method for portfolio optimization. On the left of Fig. 1, we
show how convergence varies with the multi-task approach. In
particular, training on a price history of only the assets in the
portfolio itself fails to converge. On the other hand, leveraging
the price histories of other portfolio universes, composed of
different assets converges smoothly, achieving a substantial
rate of return. On the right we show another property of our
method: namely that the look-ahead period of the model is
flexible. We illustrate 1-, 3-, and 5-step look-ahead, in this
case each corresponding to a day. The 5-step look-ahead
achieves better returns than the 3-step and significantly better
than 1-step. Since the model form is analytic, this comes with
very little overhead in model training.

Figure 2 compares the performance of our method (called
RRL in the figure) with that of standard benchmarks on the
same dataset. The benchmarks include OLMAR and PAMR,
two moving-average-based methods, Constant Rebalancing
Portfolio (CRP), which aims to keep a constant distribution of
each asset, Universal Portfolio (UP) which is a theoretically-
optimal form across all possible CRP strategies, and Anticorr,
which seeks to exploit anti-correlations across assets. We see
that our method outperforms the benchmarks on both testing
years, 2018 and 2019.

Figure 3 illustrates the universality property. We show the
result of running strategies trained on a stock universe of size
T tested on portfolios of size T ′ 6= T , for varying values of
T and T ′. In particular, we illustrate a 1-asset, a 9-asset, a
99-asset universe and finally the full 400 assets. Training is
thus performed in each of these settings. Then, we test each
policy on a universe of a different size, subject to a softmax

operation: T ′: 1, 9, 99 and 400. While the 1-asset universe (i.e.
allocating to a single stock and cash) performs poorly, in all
other cases, we see that the universality property does indeed
hold. For example, running a trading strategy on a portfolio
of 9 assets can actually be improved by training on 99 (thus
different) assets, as can be seen in the sub-figure 3(b), and so
on, for the other T , T ′. This means that the data set size that
leads to the best training can be leveraged in trading strategies
for portfolios of most any size.
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Figure 1: Comparison between different sizes of multi-task set used
(left) and different numbers of training look-ahead steps (right).
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Figure 2: The recurrent learning policy compared to common base-
lines over two test periods, 2018 and 2019.
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(a) Test on 1-asset
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(b) Test on 9-assets
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(c) Test on 99-assets
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(d) Testing on 400-assets
Figure 3: Illustration of the universality property of the model: train
on a portfolio universe of n assets, and test on different sizes.

7 Conclusion
We have presented a method based on a stochastic computa-
tion graph that uses recurrent reinforcement learning to derive
financial portfolio trading strategies. The model has the par-
ticularity of admitting a form of permutation invariance that
allows training on different sets of input, in our setting, from
portfolios composed of different instruments. We bounded the
loss from using this form of multi-task training. In addition,
the formulation admits a universality property that allows it
to be trained on a universe of m instruments and run on uni-
verses of any other size through the use of a order-preserving
transformation such as softmax. Numerical results were pro-
vided on the S&P500 including against a number of common
benchmarks.
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