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Abstract
Sufficient exploration is paramount for the success
of a reinforcement learning agent. Yet, exploration
is rarely assessed in an algorithm-independent way.
We compare the behavior of three data-based, of-
fline exploration metrics described in the literature
on intuitive simple distributions and highlight prob-
lems to be aware of when using them. We propose
a fourth metric, uniform relative entropy, and im-
plement it using either a k-nearest-neighbor or a
nearest-neighbor-ratio estimator, highlighting that
the implementation choices have a profound impact
on these measures.

1 Introduction
The problem of exploration vs. exploitation is one of the ma-
jor challenges in reinforcement learning: Should an agent
choose actions that maximize its reward (exploitation) or
should it choose actions that increase its knowledge while
risking lower rewards (exploration)?

Since the agent learns from the data it generates, its ability
to generate useful data limits its ability to achieve good per-
formance – that is, if the agent explores insufficiently it will
not be able to learn a well-performing policy.

For distinct, given policies πi and πj on a given task the
exploitation is easy to judge: it is the expected return when
the actions are chosen according to πi or πj respectively.
The exploration is usually assessed only indirectly in terms
of whether the learned policy achieves good returns. An ac-
curate quantification of the exploration can indicate whether
the agent is stuck in a local optimum and whether further ex-
ploration could improve its performance.

Some algorithms (e.g. [8, 5, 3, 7]) assess exploration ap-
proximately by novelty or uncertainty measures. However,
since those algorithms directly try to optimize these measures
and these measures are algorithm-specific, it is difficult to use
them to compare exploration across algorithms.

While the ultimate goal of a reinforcement learning algo-
rithm is to find policies that achieve the highest reward (and
eventually purely exploit), achieving this is only possible if
the algorithm explores sufficiently and thereby collects the
∗Contact Author

data to find admissible, high-reward solutions. Thus mea-
suring exploration could help in understanding the reason for
an algorithm’s performance and can also enable us to select,
tune and debug them. This eventually will lead to better-
performing reinforcement learning methods.

During early training, with little information on the maxi-
mally achievable reward or sparse reward signals, exploration
should be high to find these highly-rewarding regions in the
state space. Then the algorithm should start to explore around
the regions that have proven valuable and gradually shift to-
wards exploitation, while maintaining enough exploration for
robust learning, as it moves closer to the optimal solution.

In this work we propose to view the learning process of an
RL agent as a data-generating process and assess the achieved
exploration offline through the generated data D, since this
also allows comparison across algorithms after the training
has completed.

Without loss of generality, it is sufficient for the agent
to reach highly-rewarding regions in the state space. Note
that if the reward function depends on more than the cur-
rent state, the state can be augmented to include this informa-
tion. We make no further assumptions on where these highly-
rewarding regions are.

We analyze three metrics from the literature (bin-count
Xbin [4], bounding-box-mean XBBM [11], nuclear-norm
XNN [11]) on four intuitive state distributions. We highlight
misleading results of these existing metrics and propose our
own metric XU rel that outperforms these existing metrics and
provides a more accurate measure of exploration.

In our proposed metric we assume a uniform prior U on the
data generation for theoretically-maximal exploration, and
judge the achieved exploration of a collected dataset D by
the negative distance between this prior distribution and the
generated data distribution QD. This is our uniform-relative-
entropy metric

XU rel(D) = −DKL
(
U||QD

)
−DKL

(
QD||U

)
. (1)

2 Method
The learning process of an RL algorithm can be viewed as a
data-generating process that is run to produce a dataset of size
n sampled from an unknown or implicit distribution QD:

D(n) ∼ QD : D(n) = {(s, a, r, s′), . . .}



where (s, a, r, s′) denotes a state, action, reward and sub-
sequent state tuple. Repeating the training process again
draws a new sample from this process. We assume that the
state space of the system forms a (hyper)box, i.e. the state-
space S ∈ Rd and is bounded by lower and upper limits:
∀si ∈ S : sl ≤ si ≤ sh.

In such a case, the maximum-entropy distribution over the
state space is a uniform distribution U [10]. We therefore
make the assumption that the highest exploration would be
achieved if the explored/generated data follows this uniform
distribution and measure this by the uniform relative entropy
XU rel (1).

In general, the relative-entropy (KL-divergence) term
DKL

(
P ||Q

)
requires calculating a usually-intractable inte-

gral, which has to be approximated by a sample estimate:

DKL
(
P ||Q

)
:=

∫
p(s) log

p(s)

q(s)
ds (2)

≈
∑
s∼p

log
p(s)

q(s)
(3)

Since the data distribution QD in (1) is not available in
closed form, the distance DKL(U||QD) has to be estimated
from the available sample D. We assume that we can sample
from the prior and that log-likelihood values under the prior
are available for these samples. Thus, the KL-divergence can
be calculated using a density estimate ofD. This corresponds
to replacing p(s) and q(s) in (3) by density estimates as nec-
essary.

We looked at two ways of estimating the divergence: a) us-
ing an estimate for the density q̂(s) of QD and b) directly es-
timating the divergence using the ratio ρ̂(s), where ρ(s) is the
ratio between p(s) and q(s). These will be described in the
following two sections respectively.

We found that the estimators described in the next section
underestimate the divergence DKL

(
P ||Q

)
when P is signif-

icantly more peaked than Q. Since we do not know apriori
whether P or Q will be more peaked, choosing either one
could lead to an inaccurate estimate in general. However,
we found that using the estimators for the symmetric KL-
divergence compensates for this problem and follows the ac-
tual KL-divergence, i.e. when p(s) and q(s) are known, more
closely.

2.1 kNN estimator
One possible estimator for q̂(s) is a k-Nearest-Neighbor
(kNN) density estimator [2], where Vd denotes the unit vol-
ume of a d-dimensional sphere, Rk(x) is the Euclidean dis-
tance to the k-th neighbor of x, and n is the total number of
samples in D:

Vd =
πd/2

Γ(d
2 + 1)

(4)

q̂k(x) =
k

n

1

VdRk(x)d
=

k

nVd

1

Rk(x)d
(5)

where Γ denotes the gamma-function.

2.2 NNR estimator
Noshad et al. [6] proposed an f -divergence estimator, the
Nearest-Neighbor-Ratio (NNR) estimator, based on the ratio
of the nearest neighbors around a query point, which we will
use to estimate the KL-divergence.

They state that this estimator has a couple of beneficial
properties. Among these, the most important property for our
metric is not being affected by the over- / under-estimation
artifacts of the kNN estimator close to the boundaries of the
state space.

For the general case of estimating DKL
(
P ||Q

)
, we take

samples from X ∼ Q and Y ∼ P . LetRk(Yi) denote the set
of the k-nearest neighbors of Yi in the set Z := X ∪Y . Ni is
the number of points from X ∩Rk(Yi), Mi is the number of
points from Y ∩Rk(Yi), M is the number of points in Y and
N is the number of points in X , η = M

N , and CL and CU are
the lower and upper limits of the densities P and Q. Then,

DKL(P ||Q) ≈D̂g(X,Y ) (6)

D̂g(X,Y ) := max

(
1

M

M∑
i=1

g̃
( ηNi

Mi + 1
, 0
))

(7)

ĝ(x) := max
(
g(x), g(CL/CU )

)
(8)

g(ρ) :=− log(ρ) (9)

3 Related Work
Exploration can be measured by dividing the state space
into equally spaced bins and counting the percentage of
non-empty bins [4]. This is related to the directed count-
based exploration metric in discrete reinforcement-learning
settings [9, 1] where each visited state acquires a bonus, for
example

∑n
i

√
i when it has been visited n times. Thus, vis-

iting all states equally often in the limit achieves the highest
exploration bonus. This has also been extended to continu-
ous domains by using locality-sensitive hashing to discretize
the state space [8]. We will compare our metric XU rel against
this ratio of visited bins Xbin. We choose the divisions such
that we expect five data points in each bin on average in the

uniform case: divisions =
⌈(

N
5

) 1
d

⌉
. Since we round up, the

number of bins can exceed the total number of points N , to
compensate we scale the ratio by 1

min(N,divisions ) such that
in the case of more boxes than points the metric reaches its
maximum when all points lie in different boxes.

Zhan et al. [11] propose to measure the sum of the side
lengths of the hyperbox enclosing the collected data D paral-
lel to the state-space coordinate system, and they denote this
as the bounding-box-sum metric. To reduce the impact of the
state-space dimensionality, we use the mean instead of the
sum of the bounding box side lengths and denote this as the
XBBM metric.

By its definition this metric is prone to over-estimating the
covered state space if the collected data points are not aligned
with the axes. So the authors [11] took this problem into ac-
count and derived the nuclear-norm metric XNN based on the
sum of the eigenvalues (the trace) of the estimated covariance
Ĉ of the data: XNN(D) := trace

(
Ĉ(D)

)
.
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(a) Growing Uniform distribution with values exceeding the state space clipped to the boundaries,
thus an increasing number of points on the state-space boundaries for larger scales.
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(b) Growing Scale of Truncated Normal
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(c) Growing scale of 2-Mixture of Truncated Normal
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(d) Growing Distance of Modes of 2-Mixture of Truncated Normal

Figure 1: Comparison of exploration metrics on different data generating distributions dependent on one scale parameter: 25 dimensional
factorial distributions, similarly distributed along each dimension. The scatter plots depict first vs. second dimension (top a-d). Each compar-
ison (bottom) shows the different exploration metrics Xbin, XBBM, XNN and XU rel (ours) on the y axis and the scale parameter is depicted on
the x axis.



4 Evaluation
To compare the different exploration metrics, we assumed a
d = 25-dimensional state space, generated data from four
different types of distributions, and compared the exploration
metrics on these data. The experiments were repeated 10
times, and the mean and min-max values are plotted.

These four cases are depicted in Figure 1. While the data
are d-dimensional, they come from factorial distributions,
similarly distributed along each dimension. Thus, we can
gain intuition about the distribution from scatter plots of the
first vs. second dimension. This is depicted at the top of each
of the four parts. The bottom part of each comparison shows
the different exploration metrics, where the scale parameter
is depicted on the x axis and the exploration measure on the
y axis.

(a) Growing Uniform: Figure 1(a) depicts data generated
by a uniform distribution, centered around the middle of the
state space, with minimal and maximal values growing rela-
tively to the full state space according to the scale parameter
from 1% to 150%. Since in the latter case, many points would
lie outside the allowed state space; these values are clipped
to the state space boundaries. This loosely corresponds to an
undirectedly exploring agent that overshoots and hits the state
space limits, sliding along the state-space boundaries. Note
how the estimation (kNN vs. NNR) has a great impact on the
XU rel metric’s performance here: We would expect a maxi-
mum around a scale of 100% and smaller values before and
after (due to clipping). Here the XU rel (NNR) metric most
closely follows this expectation. The true diverge would fol-
low a similar shape although with more extreme values.

(b) Truncated Normal: Figure 1(b) depicts data of a trun-
cated Gaussian distribution with the mean in the center of the
state-space box and the scale across all dimensions set equal
to the scale parameter. This example is inspired by random
exploration around a centered starting point. Since the dis-
tribution is truncated, increasing the scale leads to more and
more uniform outcomes. The true divergence would converge
to zero, which is appropriately reflected in the metrics. The
only difference to the true divergence is that it again would
exhibit more extreme low values and rise more steeply. If an
untruncated Gaussian distribution with clipping was used, we
would expect to see effects similar to Figure 1(a).

(c) Bi-Modal Truncated Normal growing scale: Fig-
ure 1(c) shows a mixture of two truncated Gaussian distri-
butions, spaced symmetrically around the center of the state
space, with growing standard deviations set equal to the scale
parameter. This can be compared to cases where the search
process is initiated from certain fixed starting positions. In-
creasing the scale again leads to more and more uniform be-
havior. Note that the bounding-box mean XBBM rapidly ap-
proaches the maximum value and provides no further infor-
mation. A further interesting artifact is visible in the nuclear
norm XNN, where the measured exploration drops without an
intuitive explanation.

(d) Bi-Modal Truncated Normal moving locations: Fig-
ure 1(d) shows a mixture of two truncated Gaussian distribu-
tions, with equal standard deviations but located further and

further apart (depending on the scale parameter). In this case,
the state space coverage should increase until both distribu-
tions are sufficiently apart, should then stay the same, and
begin to drop as the proximity to the state space limits the
points to an ever smaller volume. While somewhat contrived,
it highlights difficulties in the exploration metrics. Both the
bounding-box mean XBBM and the nuclear norm XNN com-
pletely fail to account for vastly unexplored areas between
the extreme points. Since the XU rel NNR metric is clipped
(by definition of NNR) the metric reaches its limits when
the density ratios become extreme, which presumably hap-
pens for very small and large scale parameters in this set-
ting. Here the XUrel kNN appears to outperform NNR even
though it also suffers from under-estimation of the divergence
for points close to the boundaries.

5 Conclusion

We compared four exploration metrics on generated data
and highlighted shortcomings and caveats of these metrics:
(i) Our XU rel-NNR metric correctly shows a decrease in ex-
ploration when points are clipped to the state space bound-
aries, whereas the other metrics do not detect this problem,
(ii) XU rel converges to zero as the state space coverage be-
comes more uniform as shown for the growing truncated nor-
mal distributions, (iii) while Xbin is shown not to be useful
in high-dimensions, XU rel is. (iv) XBBM rapidly reaches the
maximum and does not provide any useful information and
XNN over-estimates the importance of the most spread out
points.

We propose our metric using the uniform distribution U as
the most general case. However, in some cases more infor-
mation about the task may be available. For example, when
a rough estimate of the goal location is already known, then
it is more reasonable to explore around that location, rather
than uniformly over the whole state space. In such a case a
more appropriate prior should be selected.

These metrics could also be used for goal babbling: con-
sider a redundant robot arm, where the relevant aspect would
be the reached configurations of the end-effector rather than
reaching all possible joint-space configurations. In this case,
transforming the collected data into the goal space, i.e. the
end-effector configurations, and estimating the metrics in
that space would provide an effective measurement of explo-
ration.

We showed that the choice of metric, as well as the im-
plementation details (such as the kNN vs. NNR estimator)
greatly influence the behavior of the metric, and that, since
approximations are necessary, an intuitive understanding of
the metrics is beneficial.

Our metric is designed to be used offline, to provide infor-
mation about the exploration performance across algorithms.
This allows us to approximate the relative entropy more ac-
curately than would be possible inside the training loop.

In future work we will use this metric to analyze the learn-
ing progress of various deep reinforcement learning algo-
rithms. We will also investigate whether this can help detect
why learning sometimes fails.
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