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Abstract
Our work builds toward AI agents that can take
advantage of data and deep learning while mak-
ing use of the structure, extensibility and explain-
ability of logical models with automated planning.
We believe such agents have the potential to sur-
pass many of the inherent limitations of current
RL-based agents. Towards this long term goal, we
aim to improve the capability of deep learning as
a front-end to produce logical state representations
required by planners. Specifically, we are inter-
ested in text-based games where we use Transform-
ers to translate the unstructured textual description
in the game into logical states. To improve the
neural network architecture for this problem set-
ting, we propose to augment the Transformer with
a pointer network in a two-staged architecture. Our
results show a clear improvement over a baseline
Transformer network.

1 Introduction
In recent years, a lot of research focus in automated decision
making has been given to Reinforcement Learning (RL), no-
tably thanks to new frameworks simplifying the implemen-
tation [Brockman et al., 2016]. RL algorithms usually re-
quire very limited knowledge about their environment, such
as a list of admissible commands and a reward function.
However, usual RL algorithms have several well-known lim-
itations such as requiring long training on expensive hard-
ware [OpenAI, 2018], difficulty in scaling up [Espeholt et al.,
2019], and they are often deemed unsafe for real-life appli-
cations [Dulac-Arnold et al., 2019], especially outside the
range of their training domain. On the other hand, classi-
cal planning is well-known to provide solutions that are con-
sistent, more explainable, and with optimality guarantees for
certain problems. However, most of the techniques in au-
tomated planning require domain knowledge that has been
carefully handcrafted by an expert. This is usually written in
a logical form such as the Planning Domain Definition Lan-
guage (PDDL). This particular limitation has been overcome
in RL, in part due to its integration of deep learning which
can be used with raw observations such as images or plain
text. Although deepRL methods are now common, there isn’t

much research on leveraging deep learning techniques for au-
tomated planning.

Our general research direction is that of expanding the
usability of Automated Planners on environments providing
raw observations by leveraging advances made in deep learn-
ing. Towards this, we concentrate on the task of transforming
raw text into logic statements compatible with planners us-
ing supervised learning. To achieve this, we design semantic
parsers to convert such natural language into a predicate-logic
structure, such as the states of the PDDL. This is a similar
problem setting to that of [Agravante and Tatsubori, 2020],
where they showed how this semantic parser can be used to-
gether with external knowledge to complete the PDDL and
”play” the TextWorld game.

Although the direction is promising, one of the main issues
shown in [Agravante and Tatsubori, 2020] is that the Trans-
former neural network was not able to achieve sufficient gen-
eralization capabilities and overfit on the training set. Our
focus is on this particular problem – that is to improve the se-
mantic parser that will specifically be applied to obtaining the
goal state. In this paper we propose a semantic parser with a
two-staged architecture based on a Transformer Network and
a novel multi-head Pointer Layer, to predict a goal state from
its natural language description.

2 Problem Setting and Task
We are using the TextWorld [Côté et al., 2018] game which
is a gym environment [Brockman et al., 2016], specifically
designed to combine RL and Natural Language Processing
(NLP). TextWorld is an environment in which every inter-
action is done through text. The game starts with an intro-
duction of a task, followed by a textual observation of the
surroundings of the player. Each action, also inputted by text,
prompts a new observation, which usually returns the success
or failure of the action, and in some situations a new observa-
tion. Figure 1 shows an example of a game. Our main inter-
est in TextWorld is the introduction text, which describes the
quest/objective of the game. We would like to parse this text
into a predicate logic form that is suitable for the PDDL

The Planning Domain Definition Language (PDDL) is the
de-facto standard for automated planners. It is a complete
formal description of a planning problem mainly consisting
of the initial state, goal state and action templates. An agent
that is able to transcribe problems into the PDDL would be



Figure 1: Example of a TextWorld game

an interesting but very daunting research challenge. Here, we
concentrate on a small but interesting piece of this – learning
to transcribe the goal state. The challenge in TextWorld is to
parse the introduction text into the PDDL goal state.

The PDDL is based on first-order/predicate logic. A PDDL
state is usually defined as a conjunction of every true propo-
sition at a given time. Each proposition is composed of a
predicate function and its arguments – the objects. The ar-
ity of a predicate refers to the number of objects required as
the input. For example, the proposition: on(stand, shirt), is
composed of the predicate on, with arity of 2. The two ob-
jects are stand and shirt. In our setup, there are 10 possible
predicates, with arities of 1 or 2.

Our main task is similar to that of [Agravante and Tatsub-
ori, 2020] where they predict the PDDL goal state given the
introduction text that describes the quest. The main challenge
here is to effectively form all the propositions by predicting
the predicates and the associated objects for each of these
predicates.

3 Deep Neural Semantic Parsing Model
Before detailing our model in the subsections, we first give an
intuition and overview as follows. The state can be expressed
as a set of every true proposition, and each proposition is
composed of a predicate and a list of objects, subsequently
defining a two-stages generation process as shown in Fig. 2.
Our work assume the knowledge of all predicates and their
arities.

Figure 2: Our two-staged deep neural semantic parsing model

The first stage is the predicate decoding, which our model
does in a structure of a Transformer Sequence-to-Sequence.
The second stage is, for each of those predicates generated

by the first stage, to supply them with the correct number of
objects. To do that, instead of relying on a dictionary of every
word that could fit in, we will use Pointer layers to predict the
index of the correct words from the input sentence, to put in
each of the expected objects of the predicate.

For example, if the introduction contains Make sure to un-
lock the chest, we will want to generate the proposition un-
locked(chest). The first stage must learn to predict the propo-
sition unlocked and the the second stage must return the index
of chest in the sentence. In our example it is the 6th word.

In practice, since some objects are multi-words (e.g.,
wooden chest), each pointer also predicts the number of
words it refers to. For predicate of arity greater than one,
the need to supply multiple objects is solved by having mul-
tiple Pointer Layers. For example, the predicate in, requires
two objects, and will use two different pointer layers, for the
object contained, and the object containing.

The main difficulty is that those Pointer layers must use in-
context information about the decoded predicate, to select rel-
evant objects. If for instance the introduction contains Make
sure the chest is unlocked and contains a shirt, and we are in
the process of decoding unlocked(chest), the network must
understand that in this context, the relevant word is chest,
even though shirt might also be relevant in another context.

Transformer Network
A Transformer Network [Vaswani et al., 2017], as opposed to
a Recurrent Neural Network (RNN) does not need to sequen-
tially pass the words (or any other sequence) through gates,
giving each word the same potential no matter its position.
This allows for bigger sequences, as well as an easier inter-
nal representation of the words, and the resulting Neural Net-
works significantly outperform RNNs in many complex NLP
tasks [Devlin et al., 2018].

A Transformer Network, is an encoder-decoder model. An
input text is encoded after embedding, using stacked multi-
head self-attention layers, and decoded with a similar struc-
ture of stacked multihead attention using the output sequence
as an auto-regressive input, and the encoded vector as an in-
ternal attention mechanism [Vaswani et al., 2017].

Before explaining our Pointer Network, we recall some of
the important underlying mechanisms of the Transformer’s
attention which we use later on.
Let’s define X = x1, x2, ..., xn an input sequence of vec-
tor (e.g. the output of the encoder) and Y = y1, y2, ..., ym
a partial output sequence (e.g. the embedded sequence of
already decoded words). Those all have the same hidden
dimension d. We define model parameters matrices WQ

d×d,
WK

d×d and WV
d×d. The sequences Q = q1, q2, ..., qm, K =

k1, k2, ..., kn and V = v1, v2, ..., vn are obtained by calcu-
lating Q = WQ · Y , K = WK · X and V = WV · X .
The vectors in Q, K, V are named queries, keys and values,
respectively.1 The names come from the role we want to give
them:

• A query represents what we look for in the sequence

1A bias is usually also added in those equations, but we left it out
for clarity



(i.e., it will encode what sort of information we need
to find next).
• A key encodes what information is actually contained by

this sequence element (i.e., what a word from the input
sentence means, as well as its syntactic role).
• A value represents what information should be remem-

bered of this sequence element if it is deemed useful.
The attention can be interpreted as the sum of the value of

each sequence element pondered by its relative importance to
a given query, and is calculated as follows:

∀ i ∈ [1,m], Ai =

n∑
j=1

softmax(
qTi · K√

d
)j × vj , (1)

where Ai is the attention to the i-th element of the sequence.
Using different matrix parameters, multiple of those atten-

tions can be stacked to obtain a multihead attention layer.
The intuition is that it allows heads to attend to different
sub-spaces, allowing for a more diverse and robust model
[Vaswani et al., 2017]. And in the specific case where X =
Y, this layer becomes a self-attention layer, whose result has
exactly the same dimensionality as its input, allowing to stack
as many of those layers as needed. A standard Transformer
network is composed of multiple self-attention layers, as well
as one multihead attention linking the input to the shifted out-
put [Vaswani et al., 2017].

Multihead Pointer Layer
A Pointer Layer [Vinyals et al., 2015], in the field of NLP,
is a Softmax applied over a vector of score of length of the
input sentence, implicitly giving probabilities that a word is
interesting for a given purpose. The score is hinting the im-
portance of a word relatively to the other words of the sen-
tence.

Pointer Networks have been successfully used for NLP
with RNN [See et al., 2017] but since the creation and gen-
eral adoption of Transformer Networks after 2017 [Vaswani
et al., 2017], they have rarely been used since the technol-
ogy developped for an RNN was not directly applicable after
a multihead attention. An important reason why it was diffi-
cult is that the output of a Transformer decoder does not con-
tain information about single words, and forget even the size
of the input text, hence referring to it simply would require
tricks such as fixed-size buffers with padding, with no real
consistency guarantee. We could also directly apply a Pointer
Layer after the encoder, but such a Pointer would not contain
any conditional information about the current decoding step,
hence pointing to interesting words from the input sentence
regardless of the context, which is not our objective here.
We believe a correct Pointer Layer formulation must satisfy
those criteria:
• The output must have the same length as the input sen-

tence
• It must use information about each word to compute the

score, and not some pooling over the whole sentence or
similar tricks
• The information must be contextualized to the decoding

process

Our model satisfies all those criteria. Using the same concepts
and notations as previously, we believe that what we want is
the relative importance of each word to a given query.
Mathematically, this gives:

∀ i ∈ [1,m], pi = softmax(
qTi · K√

d
), (2)

where pi is the pointing vector over the input sentence, com-
puted at the i-th decoding step.

Note that this formula cannot be stacked, however, it can
be rewritten in a multihead formulation, provided we com-
pute a pooling of the scores of each head before the Softmax
operation. If we define nhead to be the number of heads, and
add another index for the heads, it becomes:

∀ i ∈ [1,m], pi = softmax(mnhead
j=1 (

qTj,i · Kj√
d

)), (3)

where mnhead
j=1 is a pooling function of elements in [i, nhead].

Contrasting Eq.(1) and Eq.(3) shows how to adapt Trans-
former layers into Pointer layers.

4 Related Work
Our problem setting is adapted from [Agravante and Tatsub-
ori, 2020] but related works show that it is also applicable
to other settings. For example, some recent work has fo-
cused on adapting a pointer layer to a transformer network
[Esmaeilzadeh et al., 2019], or [Aksenov et al., 2019]. How-
ever, their implementations differ from ours significantly,
both technically and in the use case. They rely on the archi-
tecture of the Pointer Generator Network [See et al., 2017],
with an ad hoc linear layer to adapt a Transformer Memory
to the required shape of the Pointer Layer, and the use case
is text summarization, for which the pointer mechanisms had
already proved to be of great use [See et al., 2017]. The clos-
est work that can be linked to ours would be [He et al., 2019],
specifically using a pointer layer to augment a semantic parser
working with logical form. However, their architecture uses
the pointing mechanism as a copy and paste, in a sequence
decoding, when we use it in a nested two-staged decoding
process, making use of the knowledge of the predicates.

Using nested decoding in a semantic parser was done very
successfully by [Dong and Lapata, 2016] in their Seq2Tree,
applied to code and query generation, using however LSTM,
as it was the main NLP technology in research at the time. A
very similar approach using Transformers was proposed by
[Sun et al., 2019] in their TreeGen network, but the difference
in intermediary decoding step compared to LSTM made them
chose a different and more complicated architecture than the
original Seq2Tree.

5 Experiments and Results
The TextWorld games are custom generated with the house
theme, quest length of 5, world size of 5 and containing 10
objects. We made sure to use different seeds for each game.

We gathered a dataset of 67992 introduction text from ran-
domly generated TextWorld games and obtained goal state for
them by reading into each game file. Among those games,



Introduction text Predicted PDDL goal state
It’s time to explore the amazing world of TextWorld! Here is your task for today.
First off, if it’s not too much trouble, I need you to move west. After that, take a trip
west. Then, take the latchkey from the kitchenette. After that, venture east. Okay,
and then, place the latchkey into the locker in the studio. Alright, thanks!

at (locker, studio); at-agent (studio);
in (latchkey, locker); not (locked
(locker)); opened (locker)

You are now playing a fast paced round of TextWorld! Here is how to play! Your
first objective is to retrieve the Henderson’s passkey from the shelf in the garage. If
you have picked up the Henderson’s passkey, insert the Henderson’s passkey into the
Henderson’s gateway’s lock to unlock it. Then, open the Henderson’s gateway. And
then, venture west. Then, make it so that the Henderson’s gateway within the shower
is shut. That’s it!

at-agent (shower); not (locked (hen-
derson’s gateway’s)); not (opened
(henderson’s gateway’s))

I hope you’re ready to go into rooms and interact with objects, because you’ve just
entered TextWorld! Here is how to play! First thing I need you to do is to unlock the
formless gateway with the formless key. And then, ensure that the formless gateway
in the steam room is open. After that, make an attempt to venture west. After that,
recover the hat from the attic. After you have picked up the hat, you can deposit the
hat into the spherical locker. Got that? Good!

at (spherical locker, attic); at-agent
(attic); in (hat, locker); not (locked
(locker)); opened (locker)

Table 1: Example of generated goal states from our model – the first two are perfect predictions, and the third has a few mistakes highlighted.

Accuracy BLEU score
Seq2Seq baseline (seed 1) 0.872 0.869
Seq2Seq baseline (seed 2) 0.709 0.751

Our Model (seed 1) 0.903 0.900
Our Model (seed 2) 0.939 0.918
Our Model (seed 3) 0.936 0.917
Our Model (seed 4) 0.927 0.913

Table 2: Results

13032 goal states contained objects not included in the intro-
duction, that we discarded, as sometimes the game include
hidden or implied proposition in the goal state, that are not
actually necessary, or predictable, bringing the total dataset
to 54960 elements, that we split in 47100 training examples
and 7860 testing examples (roughly one sixth).

We trained both a Sequence-to-Sequence (Seq2Seq) base-
line, and our model for 1000 epochs, performing an evalu-
ation on the complete testing set every 50 epochs, and only
report the best epoch results.

We used two metrics: the first is the accuracy, describing
how many goal states were perfectly predicted among the
testing set, and the second is the BLEU score. The BLEU
score is used to give a more local information about correct-
ness at the words level. On the other hand, the accuracy being
the proportion of the problems entirely solved, it only counts
the perfect predictions, and is thus less biased.

In Table 1, the first two results show the capacity of the
network to understand that intermediary states will then be
canceled and do not appear in the goal – the latchkey is placed
in the locker so we no longer carry it, and the gateway we
opened must be closed again. We picked the third example
to show a mistake the network can make: it doesn’t find that
spherical is an adjective of locker. We found this task to be
difficult, because spherical is not openable like the locker,
and it can be an adjective for many different types of objects.
As a result, the prediction correctly inferred that a locker must
be opened, but those results might not be specific enough to

solve the problem.
Table 2 shows that our model performs better than a

Seq2Seq baseline in both the accuracy and BLEU metrics.
This performance is also consistent in training runs with dif-
ferent random seeds. In investigating the deficiency of the
Seq2Seq baseline, it is interesting that we haven’t found ex-
amples where a predicate had an inappropriate number of ob-
jects. This suggests that this is probably an easy rule to learn.
We can infer from this observation that the benefits of our
model doesn’t come from the nesting alone, but also from the
pointing mechanism.

6 Conclusion
We have built a semantic parser to predict logic forms usable
by an automatic planner, using a nested architecture stacking
a Transformer Network and custom Pointer Layers. We have
found that using a pointing mechanism to augment a Seq2Seq
network, by allowing it to refer directly to input words can
still be an effective solution, even with Transformer Net-
works, as it can significantly outperform a network without
this mechanism.

The main reason for the difference between the two mod-
els is the difficulty to refer to objects, as in the case of the
Seq2Seq, it consists of picking the correct word in a huge
dictionary (562 words here) with even a few of those words
never seen during the training, whereas the pointing mecha-
nism has neither this scale issue, nor the discrepancy between
training and testing.

Subsequently, we presented an architecture allowing this
pointing mechanism to benefit from the decoding memory,
so that the pointing mechanism gives relevant words in the
current decoding context. Finally we were able to use an
easy to implement, two-staged nested architecture with a
Transformer network, inspired by successful work such as
Seq2Tree [Dong and Lapata, 2016] or TreeGen [Sun et al.,
2019] and paving the way for future work in semantic pars-
ing with nested syntax, such as code generation.
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