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Abstract

Deep reinforcement learning combined with
Monte-Carlo tree search (MCTS) has demon-
strated high performance and thus has been
attracting much attention. However, the learning
convergence is quite time consuming. In com-
parison, learning by playing board games with
human opponents is more efficient because skills
and strategies can be acquired from the failure
patterns. We assume that failure patterns contain
much meaningful information to expedite the
training process, working as prior knowledge
for reinforcement learning. To utilize this prior
knowledge, we propose an efficient tree search
method that introduces the use of a failure ratio that
has a high value for failure patterns. We tested our
hypothesis by applying this method to the Othello
board game. The results show that our method
has a higher winning ratio than a state-of-the-art
method, especially in the early stage of learning.

1 Introduction
Recently, reinforcement learning (RL) has been attracting
much attention, especially for robot control and game appli-
cations [Mnih et al., 2015; Silver et al., 2017; Wu and Tian,
2017; Pathak et al., 2017; Kimura et al., 2018; Lillicrap et al.,
2015; Kimura, 2018; Mnih et al., 2016; Silver et al., 2016].
AlphaZero [Silver et al., 2017] demonstrated astonishing per-
formance by defeating professional Shogi (Japanese chess)
players after only 24 hours of training, thereby reducing the
tremendous amount of training data previously required. This
achievement was attained by integrating into the training pro-
cedure an adversarial setting called “self-play.” The learning
process of AlphaZero consists of two phases: self-play using
Monte Carlo tree search (MCTS) to make training data and
deep network parameters updating using the obtained data.

However, AlphaZero has a huge computational cost; it re-
quires 5,000 TPUs for self-play and 64 GPUs for updating
the network parameters. The huge cost makes it almost im-
possible to train the model unless such a high performance
computational resource is available. Therefore, a more effi-
cient way to train such models is needed.

When people learn and acquire skills, learning from fail-
ures is important. This helps prevent repetition of the same
mistake. For example, there may be moments when a person
playing a board game would like to cancel the last move and
try a different move. In a practice environment, such cancel-
ing is called ‘undo.’ These situations are very likely to be
important in determining the winner. Hence, we assume that
learning from failure is effective and works as prior knowl-
edge in reinforcement learning. Leveraging this prior knowl-
edge, we made a hypothesis that weighting of exploration of
moves right before the agent fails will improve the efficiency
of learning. The effectiveness of such weightings is higher in
the beginning of training, when the algorithm does not have
much training data.

Therefore, we propose integrating a framework that en-
courages the exploration of critical situations that lead to fail-
ure with the state-of-the-art AlphaZero algorithm. In our
method, critical situations for winning are prioritized by ap-
plying a weighting function to a tree search during training.
The failure ratio is defined as a difference between the Q-
value (the quality of a state-action pair) of the current move
and the previous move. Its usage encourages the agents to
prioritize exploration of situations that are important in deter-
mining the winner, which facilitates the learning process.

We evaluated our proposed method by using an 8× 8 Oth-
ello game and compared the performance of our method with
that of the state-of-the-art AlphaZero algorithm [Silver et al.,
2017]. Our study offers the following three contributions:
• A prior knowledge about learning from failure is for-

malized as “failure ratio”, the gap between the current
predicted value and the value of the previous move in
the MCTS architecture, to direct agents to explore in the
proximity of failed actions;
• The self-play process is made more efficient by weight-

ing critical situations for winning using the failure ratio;
• The proposed method is evaluated using the Othello

game with two board sizes, and a higher winning ratio
than that of the state-of-the-art method is achieved in the
early stage of learning.

2 Related Work
The MCTS [Browne et al., 2012] search algorithm combines
the precision of a tree search with the generality of random
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Figure 1: Overview of using proposed method in Othello game. Val-
ues denoted in the figure are examples.

sampling. Its high efficiency has been shown especially in
the context of playing Go [Silver et al., 2016]. Since it
was first reported in 2006, various approaches for improv-
ing its performance have been proposed [Osaki et al., 2008;
Bjarnason et al., 2009; Browne et al., 2012]. Temporal differ-
ence learning with Monte Carlo simulation (TDMC) [Osaki
et al., 2008] uses a combination of temporal difference learn-
ing and the probability of winning in each non-terminal posi-
tion, which is similar to our approach. However, our approach
not only uses the temporal difference as in TDMC and in Q-
learning, but also utilizes the difference between the current
Q-value and the Q-value two time-steps before (the previous
action taken by the agent) to further facilitate exploration over
the important phases.

Prioritized experience replay [Schaul et al., 2015] is based
on an idea similar to that of our method. It allows an agent
to store experiences and to learn from training data sampled
from the stored experiences rather than from online sampling.
When the data is sampled, it is weighted so that “impor-
tant” samples for learning are more frequently drawn from
the buffer. This method is widely used in various deep rein-
forcement learning setups. While prioritized experience re-
play does not contribute to data collecting process (as there is
no prioritization in exploration), our method makes the pro-
cess of collecting data itself more efficient, reducing the total
amount of required data.

3 Method
The learning process of AlphaZero consists of two phases:
self-play to create training data and updating of the dual pol-
icy and value networks. In this study, we propose to intro-
duce failure ratio into this self-play architecture. The flow
of parameter updates is the same as that in the existing ver-
sion of AlphaZero. Figure 1 shows an overview of our pro-
posed method. In this section, we first explain the existing
AlphaZero method and then describe our proposed method to
integrate a failure ratio into the self-play architecture.

3.1 AlphaZero
Self-play
In self-play, training data is collected by playing games with
itself. Each move is determined by MCTS, which returns a
policy π(s, a), through a series of simulated game-plays, ex-
tending a tree from root to leaf. Each node in the tree corre-
sponds to a different configuration of the board. Nodes hold
the predicted winning ratio (= Q(st, at)), and the number
of times the node is visited during simulation (= N(st, at)).
The search proceeds by selecting action at at state st based on
the current neural network parameters. The agent expands the
tree by taking the maximum value of the predicted winning
ratio with upper confidence bound (= U(st, at)). This value
is the summation of the predicted winning ratio and upper
confidence bound b(st, at), which weights less-visited nodes
to facilitate the search over these nodes. Formally, U(st, at)
and b(st, at) are calculated as

U(st, at) = Q(st, at) + b(st, at), (1)

b(st, at) = π(st, at)

∑
aN(st, a)

1 +N(st, at)
. (2)

At the beginning of each game during self-play, the tree is
initialized, so b(st, at) and N(st, at) are set to zero.

Parameter updating
The policy and value functions are approximated by deep
neural networks, which takes state st as an input, returns the
probability distribution over action a (p = P (a|st)), and cal-
culates expected return v ≈ E[Rt|st, at]. Formally, the dual
neural networks are defined as

(p, v) = fθ(s) (3)

Parameters θ of the networks are updated using the training
data (history of self-play moves) obtained from the self-play.
The terminal state z is equivalent to the end of the game; the
value of the terminal state is +1 for winning, −1 for losing,
and 0 for drawing. Parameters θ are updated to minimize
the error between the final outcome z and the predicted value
of the state vt, with maximizing the similarity between the
search probability distribution πt and the policy vector pt.
Therefore, the loss function l is defined as follows:

l = (z − v(st))2 − πtT log pt + c||θ||2, (4)

where c is a parameter weighting for L2 regularization. The
mean-squared error is used for the value function, and cross-
entropy losses are used for the policy function. The training
data is augmented by generating eight symmetric configura-
tions for each time-step. Parameters are updated by stochas-
tic gradient descent when an iteration is over. The updated
network parameters are used for the search process during
self-play in the next iteration.

3.2 Proposed method
In our proposed method, we introduce a “failure ratio” into
the calculation of U(st, at) (Eq. 1) to prioritize important sit-
uations in self-play. Our assumption is that the failure ra-



tio represents the degree of importance of its action. There-
fore, the failure ratio is calculated from the difference be-
tween the next predicted winning ratio and the current pre-
dicted winning ratio of the agent. In a two-player board
game, the next predicted winning ratio of the agent is the ratio
of two time-steps ahead since one step ahead represents the
opponent’s turn. Equation 6 defines failure ratio f(st, at).
Q(st+2, at+2) denotes the predicted winning ratio at time
t+ 2 (the agent’s next turn), two time-steps ahead of the cur-
rent node at time t. When the failure ratio is high, action at is
considered to be a failure because the winning ratio decreased
by taking at. Hence, the failure ratio encourages the agent to
revisit a state where it selected a failure move to explore a
better move.

The failure ratio is updated when the Q-value of two time-
steps ahead is given, like in SARSA [Rummery and Niran-
jan, 1994].We define the weighted predicted winning ratio
as the summation of the failure ratio f(st, at) and the pre-
dicted winning ratio with upper confidence bound U(st, at).
In addition, we introduce a decay factor into this failure ra-
tio. We hypothesize that although using the failure ratio is
initially effective, its effectiveness decreases as learning pro-
ceeds and a sufficient number of failure cases have been at-
tained. Hence, if the agent keeps focusing on learning failure
cases, the parameters will be updated so that the agent comes
close to failure patterns, which might not be optimal. There-
fore, we decrease failure ratio in accordance with the progress
in learning. The decay ratio reduces the weight of the failure
ratio by an exponential order at each iteration. Ultimately, the
predicted winning ratio (U ′(st, at)) is

U ′(st, at) = U(st, at) + γnepαf(st, at) (5)

f(st, at) = Q(st, at)−Q(st+2, at+2), (6)

where α is a weight that determines the effectiveness of using
the failure ratio, γ is the decay factor, and nep denotes the cur-
rent epoch index, defined as starting from zero. Our proposed
method collects training data using MCTS with U ′(st, at).

4 Evaluation
We evaluated our proposed method using 6×6 and 8×8 Oth-
ello environments. 6× 6 and 8× 8 mean the board size. We
compared the performance of our method with that of Alp-
haZero [Silver et al., 2017] by conducting matches at the end
of each training iteration. One iteration is defined as a cycle
consisting of self-play and training, as described in Fig. 1.

The Elo rating system is a method for calculating relative
skill levels of players in board games. The expected score of
Player A against Player B is calculated using

EA =
1

1 + 10(RB−RA)/400
, (7)

where RA is the rating of Player A, and RB is the rating of
Player B. If Player A was expected to score EA but actually
scored SA points, Player A’s rating is updated using

R′A = RA +K(SA − EA), (8)

where K, the K-factor, is the maximum possible adjustment
per game. In this experiment, we set K = 32 for all matches.

4.1 Network architecture
The policy network and the value network share most of their
parameters. The shared part consists of four convolutional
layers, followed by two fully-connected layers. The kernel
size is 3, the filter size is 512, the stride is 1, and the padding
is 1 for all layers. The output of the shared layers is connected
to two separate networks, the policy network and the value
network. Each layer is batch-normalized, except for the final
layer of each network. The final layer of the policy network
is activated by a softmax function while the value network
is activated by a hyperbolic tangent function. All the other
layers are activated by the ReLU function.

4.2 Experimental setting
We prepared 20 agents with different random seeds for each
method and conducted matches for all combinations in a
round-robin manner, meaning 400 combinations in total.
Moreover, we executed multiple matches for each combi-
nation and calculated the averaged winning ratio for these
matches. For the 6× 6 environment, we executed 50 matches
for each combination (= 20, 000 matches in total for each it-
eration) and for 8× 8, we executed 20 matches for each com-
bination (= 8, 000 matches for each iteration). The winning
ratio was defined as nwin/nlose; we ignore the number of
draws. Multiple hyperparameter settings, such as the weight
of the failure ratio and the decay factor were tested to deter-
mine stability for the effectiveness of using failure ratio over
time. We used the NVIDIA Tesla V100 GPU. It took approx-
imately 5 hours to train one agent in both environments.

4.3 Results
Matches using 6× 6 Othello environment
We evaluated the performance of our proposed method
against that of AlphaZero [Silver et al., 2017] by calculat-
ing the transition in the winning ratio in the 6 × 6 Othello
environment. Figures 2 shows the transition results with fail-
ure ratio weight α set to 0.7 and decay ratio γ) set to 0.9, our
method achieved an average ratio of around 54% in the early
stage of learning. In fact, the proposed method with decay
factor set to 0.9 maintained a higher winning ratio over 20
iterations. Its performance settled down to around 50% once
the training converged. The decay factor plays an important
role; without a decay factor (γ = 1.0), our method could only
keep winning over ten iterations, and starts losing afterward.

Matches using 8× 8 Othello environment
Figure 3 shows the transition in the winning ratio of our pro-
posed method and Elo rating with α = 1.5 and γ = 0.8
against AlphaZero. Our method achieved a higher winning
ratio over the first 50 iterations. Moreover, it achieved a
66.4% winning ratio at around the 7th iteration, which is
much higher than the opponent’s ratio. We also tried differ-
ent hyperparameters such as α = 1.5 and γ = 0.8, and the
results were nearly the same. This indicates that our method
performs stably well with different hyperparameters. As for
Elo rating, the maximum difference between the proposed
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Figure 2: Winning ratio for proposed method against AlphaZero
in each epoch using 6 × 6 Othello environment with failure ratio
weight (α) set to 0.7 and decay ratio (γ) set to 1.0 or 0.9. We created
20 agents for each method and conducted all-play-all. We conducted
50 matches for each combination, so the result is the average for
20,000 matches. Error bars indicate standard error for all matches.
Each point is moving average for four iterations.

method and AlphaZero is 124.30 for α = 1.5, γ = 0.8. The
result shows that the proposed method maintained a higher
Elo rating over the whole period. Our Elo ratings may look
much smaller than those in the original AlphaZero paper [Sil-
ver et al., 2017], but this is because our Elo ratings were cal-
culated purely from the proposed method and AlphaZero, and
the ratings for AlphaZero are not fixed to a constant value.

4.4 Discussion
Decay factor
As shown in the experiment, weighting without a decay fac-
tor degrades the performance in the latter part of training. It
indicates that the ratio rather leads the agent to learn how to
approach states that are near a serious mistake, which is not
the optimal strategy. Introducing the decay factor helps the
agent learn efficiently only in the early phase of training and
does not interrupt the learning process near convergence.

Convergence of exploration
The gradual decrease in the difference in performance be-
tween AlphaZero and our method over time indicates that Al-
phaZero also learns various patterns, including failure cases,
when it has performed a sufficient number of iterations. How-
ever, most importantly, our method takes much less time than
AlphaZero to make the learning process converge.

Board size
The much better results when using the 8 × 8 Othello en-
vironment could be because the learning policy for 8 × 8 is
much more complicated than for 6 × 6, which increases the
effectiveness of using the failure ratio. This indicates that the
effectiveness of using the failure ratio is more significant for
more difficult tasks, such as Go and Shogi.

Introducing a lower bound and success ratio
We conducted a preliminary experiment in which we intro-
duced a lower bound in the calculation of the failure ratio and
replaced the failure ratio with the success ratio (= opposite of
the failure ratio) and tested two methods. We found that only
the proposed method (Eq. (6)) worked well.
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Figure 3: (Left axis, dashed lines) Elo rating for each method. (Right
axis, red solid line) Winning ratio for proposed method against Alp-
haZero in each iteration. The failure ratio weight (α) was set to 1.5
and decay ratio (γ) was set to 0.8. We created 20 agents for each
method and conducted all-play-all. We conducted 20 matches for
each combination and updated the Elo rating in accordance with the
results of all matches in each iteration. The winning ratio is the av-
erage for 8, 000 matches. Error bars indicate standard error for all
matches. Each point is moving average for four iterations.

Failure ratio with a lower bound:

f(st, at) =

{
Qt −Qt+2 (f(st, at) ≥ 0)

0 (otherwise)
(9)

Success ratio:

f(st, at) = −(Qt −Qt+2) = Qt+2 −Qt (10)

These two methods could not constantly achieve a higher
winning ratio against AlphaZero. With Equation (9), explo-
ration is prioritized only when the state-action pair at time t
is a failure. Our method not only prioritizes the exploration
of failed moves but also discourages the exploration of states
where the agent performed well. The fact that Eq. (9) did
not work indicates that we should also weight the successful
states. With Equations (10), exploration is prioritized around
successful states. While it may sound reasonable to focus on
learning successful behaviors, it worked poorly. It indicates
that encouraging the exploration of successful states leads the
agent to learn similar successful patterns, which discourages
agents from finding other better strategies.

5 Conclusion
We introduced a failure ratio in MCTS to enable a more ef-
ficient exploration in the early stages of training for faster
convergence of learning. We used the difference between
the current predicted winning ratio and the previous ratio to
encourage the exploration of states that will support beating
the opponent. The experiments using Othello environments
showed that the agents learned efficiently in the early stages
of learning. We discovered that we need to reduce the degree
of the failure ratio at each iteration so that it has an effect only
on the early phase of training. Our method is more useful for
complicated target tasks and can be combined with any RL
algorithms that involve a self-play process. As future work,
we plan to incorporate a prioritized experience replay method
into our method to create stronger agents.
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