
Towards Logical Model-based Reinforcement Learning: Lifted Operator Models

Corentin Sautier1,2 , Don Joven Agravante1 , Michiaki Tatsubori1
1IBM Research

2MINES ParisTech - PSL Research University, Paris, France

Abstract
Model-based reinforcement learning has produced
significant state-of-the-art results in recent years.
However, current models are still opaque and diffi-
cult to integrate with external knowledge bases. To
address these issues, we envision a two-stage pro-
cess where deep learning first transforms raw ob-
servations into a logical state. Having this logical
representation provides interpretability and an in-
sertion point for external knowledge. As a second
stage, we propose to leverage concepts from classi-
cal planning within the model-based reinforcement
learning framework. In particular, we adapt lifted
operators as our model to be learned and then plan
over this model with PDDL planners. This paper
focuses on the second stage where we show how
we can learn the lifted operator models from an im-
perfect semantic parser.

1 Introduction
Reinforcement Learning (RL) is the machine learning
paradigm whereby an agent learns the best way to interact
with an environment. This is done by taking actions and ob-
serving the results. The integration of deep learning with RL
has shown to be very effective, in particular when interacting
with complex environments such as directly from the stream
of images in video games [Mnih et al., 2013]. The initial pop-
ularity of so-called deep RL was due to model-free RL, where
the deep neural networks are used in an end-to-end manner.
Although this method is very effective, it came along with
several well-known issues such as the lack of explainability
and need for huge amounts of interaction data [Dulac-Arnold
et al., 2019].

To address the shortcomings of deep RL, research has re-
cently shifted the focus to using deep learning with model-
based RL. The philosophy of the approach is to first learn
a model of the environment dynamics and then to plan
over this model. Recent results have shown that this is an
even more promising approach [Schrittwieser et al., 2019;
Łukasz Kaiser et al., 2020]. In particular, these results have
shown significant improvements in data efficiency. However,
the models are still fairly opaque making it difficult to inter-
pret. To improve this, we propose to incorporate concepts

Figure 1: Model-based architecture with logical states

from classical planning - in particular symbolic logic as an
intermediate representation.

Figure 1 shows our envisioned framework and the problem
setting. The left side depicts that the environment state can
be sufficiently approximated as a set of logical facts. Con-
tinuing in the bottom right, the agent can get observations
of the environment (e.g. images). Here, we assume that we
have a semantic parser that converts these observations into
a logical form. We assume that the semantic parsing is good,
but won’t be perfect, hence we only have a noisy representa-
tion of the real state. The task of our agent is to learn from
the noisy states and produce good actions in the environment.
Our framework is a two-stage process - a semantic parser and
an agent that learns from noisy logical states. This paper con-
centrates on the agent but semantic parsing is a growing and
rapidly improving research area in both text [Ge and Mooney,
2009] and images [Herzig et al., 2018]. We anticipate that
bigger pre-trained models will soon open-up several applica-
tion areas, one of which is our problem setting.

Since our agent takes as input noisy logical states based



on interacting with an environment, we are at the inter-
section of model-based RL and classical planning. In this
paper, our approach is to formulate the learned model as
lifted operators of classical planning. This would allow us
to use planners that can provide guarantees about consis-
tency, safety and optimality. In the classical planning lit-
erature, operator learning has been shown in the context of
using partial or impractical data, such as partial states or
sequences of action only as it would limit the amount of
human work in specifying the problem [Yang et al., 2007;
Cresswell and Gregory, 2011; Cresswell et al., 2013]. Sim-
ilarly, data-agnostic methods have been developed, often
presented as a satisfiability problem [Aineto et al., 2018;
Zhuo et al., 2019].

In contrast to our outlined approach, there are two notable
works that exist in the literature that consists of training a
model while still possibly benefiting from the structure of
symbolic logic. First, [Evans and Grefenstette, 2017] com-
bines Inductive Logic Programming with Neural Networks to
enable this. Second, [Asai and Fukunaga, 2017] tries to solve
a similar problems to ours, end-to-end, using an automati-
cally learned representation, and a classical planner. How-
ever, the ability to solve such a problem end-to-end seem to
again come at the price of explainability from a human per-
spective.

In this paper, we discuss solutions to convert a few noisy
high-level environment states into operators’ knowledge for
planning problems, and use them to solve the Tower of Hanoi
provided by PDDLGym [Silver and Chitnis, 2020]. We show
that lifting propositions can help an effective learning of the
operators, especially when considering noisy data. We dis-
cuss methods to learn operators, with Neural Network, and
present a few use-cases where Neural Networks can bring a
real benefit in dealing with operators with noisy data. We
tackle the preconditions learning in a novel way, using Fea-
ture Importance, and prove it has the ability to disambiguate
preconditions from other frequent propositions which the
most usual methods fail to do.

2 Problem setting and formulation
We consider a deterministic environmentE, that, even if only
observable through images, is based on an internal logic state,
s̃ ∈ S, or can be approximated as such. Here, we define our
logical states to consist of predicate functions grounded on
some objects. For example, on(disc1, peg1) is a proposition
composed of the predicate on, grounded on the objects disc1
and peg1. Our full logical state is defined as a conjunction of
every proposition’s boolean value at a given time.

We keep the basic RL problem setting wherein the agent
interacts with environment, E, by deciding actions, a ∈ A, to
take based on observations, o ∈ O. The environment transi-
tions the state based on the action taken such that the dynam-
ics of the next state is s̃′ = T (s̃, a). Two particularities of our
problem setting are now added onto this base setting. First,
we assume that we have a good but imperfect semantic parser,
φ, that produces approximates of the state, s, from o, that is
s = φ(o). Second, the environment dynamics, T , can be
re-formulated as planning operators with preconditions and

effects. Preconditions are the set of logical statements needed
for an action to be valid. The effects are the set of logical
statements that change between s̃′ and s̃. We show these in
subsection 2.1

We follow the model-based RL setting where we learn
the model (i.e. the operators) from a dataset of triplets,
(s, a, s′) ∈ S × A × S. Note that we can only collect the
approximates of state, s, instead of the actual internal state s̃.
A triplet is valid if s̃ respects the preconditions of a, and from
the application of the effects it comes s̃ 6= s̃′. By extension,
we can also define valid actions relative to the triplet validity.
In the problem of the Tower of Hanoi for instance, trying to
place a large disc on a smaller one would be an invalid action.

Once we have learned the operators from the triplets, our
agent has to plan over this model to produce good actions.
Since we follow here the PDDL planning formulation, we
only need the initial state si ∈ S and a goal state sg ∈ S
together with the operators. We assume that the initial state
we obtain is sufficiently good. As for the goal state, although
it is possible to relate this to the RL reward function, we leave
this as a future work and assume here that the goal state is
specified beforehand.

2.1 Operators
An action, similarly to a proposition, is composed of an op-
erator predicate, grounded on objects. An operator is an ab-
stract representation of every possible action, and contains
the information about the preconditions and the effects. The
PDDLgym implementation of the Tower of Hanoi [Silver and
Chitnis, 2020], only has a single operator: move, of arity 3,
defined in PDDL formatting, by:
:action move
:parameters (?disc ?from ?to)

:precondition :effect
(and
(smaller ?to ?disc)
(on ?disc ?from)
(clear ?disc)
(clear ?to))

(and
(clear ?from)
(on ?disc ?to)
(not (on ?disc ?from))
(not (clear ?to))))

The action move defines 3 parameters, whose state must
match a list of propositions in the preconditions to consider
the action valid, and will be affected by the effects in the state
following the action. Operators can fully define all state tran-
sitions and the main task in this paper is to learn an equivalent
representation of this operator.

2.2 Lifting of an action
The PDDL domain defines operators by using parameters,
which, once grounded on actual objects becomes an action.
The intuition is that this operator representation contains gen-
eral model knowledge, whereas actions would only inform
about the current state, making the latter less efficient.

Practically, every objects the action is grounded on can be
converted into an abstract variable, specifying only their in-
dex in the action and propositions related to other objects
should be discarded, reducing their number (Table 1). Two
different propositions can appear similar once object-specific
details are abstracted (Table 2) thus improving both data effi-
ciency and consistency to unseen states.



Table 1: Lifting process

Grounded Lifted
:action :action
move(disc1, disc2, peg3) move(?v1, ?v2, ?v3)
:state :state
clear(disc1) clear(?v1)
clear(peg2)
clear(peg3) clear(?v3)
on(disc1, disc2) on(?v1, ?v2)
on(disc2, disc3)
smaller(disc1, disc2) smaller(?v1, ?v2)
smaller(disc1, peg3) smaller(?v1, ?v3)
smaller(disc2, peg3) smaller(?v2, ?v3)
. . .

Table 2: Generalization capabilities of the lifting

Grounded Lifted
:action 1 :action 1
move(disc1, disc2, peg3) move(?v1, ?v2, ?v3)
:state 1 :state 1
on(disc1, disc2) on(?v1, ?v2)
:action 2 :action 2
move(disc1, disc3, peg3) move(?v1, ?v2, ?v3)
:state 2 :state 2
on(disc1, disc3) on(?v1, ?v2)

3 Learning of the operators
We split this section into the operator preconditions and ef-
fects. However, we first discuss the effects since it is simpler.

3.1 Operator effects
Let’s consider a valid triplet (s, a, s′). The effects of a are all
the proposition from s that have become true or false in s′. It
comes that the effects of a to s can be found by taking s′− s.
If we apply lifting on this difference with perfect states, we
obtain the exact correct operator’s effects, meaning that, in
the absence of noise only a single valid action is required to
learn them.

In the presence of noise, a simple strategy would be to av-
erage those effects found from multiple triplets. This can al-
ready give a strong statistical baseline. Furthermore, we can
also use them as noisy labels to train a neural network. Such a
neural network, would need to be inputted the operator itself,
which we convert in a one-hot encoding, and we also input
the boolean value of every possible propositions for the lifted
state. It might seem unnecessary, but we believe inputting the
relevant part of a state can help the network recover from the
noise. It will also serves the purpose of allowing to predict
the preconditions.

3.2 Operator preconditions
Let’s consider a valid triplet (s, a, s′) and assume first the
state are perfectly correct. The preconditions of a are the
boolean value of the proposition from s that were needed for
it to be valid. The task is to find which of the propositions in
s are necessary, and which are just coincidental. To do this,

let’s consider an operator ω, if we name P the set of all possi-
ble propositions’ boolean value, and pr the set of all precon-
ditions of ω, and Vω the subset of valid triplets whose actions
are grounded from ω, by the definition of the precondition, it
comes:

∀p ∈ P, p ∈ pr =⇒ ∀(s, a, s′) ∈ Vω, p ∈ s,
and by contraposition:

∀p ∈ P, ∃(s, a, s′) ∈ Vω | p /∈ s =⇒ p /∈ pr.
Essentially, that means if we can find a valid triplet in which
state a proposition is not, this proposition is not a precondi-
tion of the action. It comes that a precondition is the intersec-
tion of the lifted propositions in all the valid triplets’ state of
the dataset. Given a diverse enough dataset, this allows the
finding of working operators’ preconditions.

When we consider noisy states, a triplet’s state might be
missing a proposition that is actually a precondition, if the
noise removed it. Thus instead of considering the precondi-
tions are the propositions present in every valid triplet’s states,
we consider those present in most valid triplets’ states, defin-
ing a cutoff proportion pcutoff , a precondition is a proposi-
tion’s boolean value seen in more than pcutoff of the triplets
in the dataset.

Intuitively, there can be a benefit in using invalid triplets as
well, as it could be used to remove spurious propositions that
are actually decorrelated to the validity of an action. We built
and trained a binary classifier, predicting an action validity
from the state and operator input.

Obtaining the preconditions can be trimmed down to find-
ing which propositions – or neural network features – are re-
sponsible for the discrimination between a valid and an in-
valid triplet. We used a variation of the Feature Importance
method (Algorithm 1) [Breiman, 2001] to attribute an impor-
tance score to each proposition, and consider a precondition
for an operator every proposition above a certain threshold.

Algorithm 1: Feature Importance
importance = dict()
for (s, a, s’) in dataset do

reference = model validity(s, a)
if reference > 0.5 then

for p in P do
if p in s then

prediction = model validity(s - p, a)
else

prediction = model validity(s + p, a)
end
importance[a.operator] += d(prediction,
reference)

end
end

end

model validity is the validity prediction by the model
d is a distance.
a.operator is the operator of the action a



4 Results
4.1 Grounded or Lifted Representations
We trained a lifted and a grounded model on 2000 triplets,
roughly 10% of which are valid, with uniform noises. The
uniform noise present the probability that each proposition’s
boolean state is inversed. The task trained on was a state tran-
sition, meaning by inputting a state and an action, we tried to
output the next state.

We report the F1 score between the prediction of the next
state, and the ground truth for 1000 valid triplets.

Figure 2: Evolution of Grounded and Lifted F1 score with noise

The results (Figure 2) show that, in absence of noise,
both models have similar capabilities, however, the grounded
model will fit to the noise, making it very little resilient.

4.2 Results for the effects
The baseline method will consider as effects the propositions
seen in a majority of the valid examples’ effects. Since those
effects are the difference between a state after and before an
action, they are affected by noise on both state.

We report the solving rate of the planner, using effects
learned from 4000 noisy triplets and ground-truth precondi-
tions to complete the domain knowledge.

Table 3: Results for the solving rate while predicting operators’ ef-
fect with uniform noise

Noise 0.25 0.26 0.27 0.28 0.29 0.30
Baseline 95% 75% 60% 25% 10% 0%
Our Method 70% 75% 55% 60% 60% 50%

Our method seems able to learn on labels more often wrong
than right. In our understanding, there are two phenomenon
that could explain that:
• The effects being a logic form, its propositions are not

completely decorrelated from each other. It is possible
the network learn that some propositions have to be put
together.
• The ML method has in its inputs the previous state,

which might help the network to learn some noise con-
trol in the very noisy effects, from the less noised previ-
ous state.

A second point to notice is the inherent instability of the
Neural Network, with noisy labels, as the solving rate is
very variable even with lower noise amounts, that statistical
method can solve quite reliably.

4.3 Results for the preconditions
The non-Deep Learning solution for the preconditions has a
major flaw. There can be situations were no value of pcutoff
could solve the problem. If a proposition p is very frequent,
but not a precondition of an operator ω, it could still be seen
in more than pcutoff of the valid triplets with ω and thus be
considered by this method as a precondition. Increasing the
cutoff proportion can fix this problem, but at the same time
reduces noise resilience to false negative.

In order to test this inability of the non-Deep Learning
solution, we need to have an example of a proposition, not
belonging to the preconditions of an operator, but still very
frequent. By default, in the PDDLGym [Silver and Chit-
nis, 2020] implementation of the Tower of Hanoi, there is
no such case, we thus design a noise specifically to simulate
those conditions. In this noise, we set to true randomly, with a
probability of 0.6 all possible smaller propositions, and don’t
modify the others. This makes that in a lifted valid example
of the action, some smaller propositions will appear very of-
ten, regardless of their precondition status. We used a cutoff
value for the intersection method of 0.75, having found it to
be an effective value for various amounts of evenly distributed
noise. We used the same 4000 training examples for both the
intersection and the ML methods to learn the preconditions,
and completed the domain knowledge with ground-truth ef-
fects. We report here the solving rate on 20 games.

The results are that our methods could solve 85% of the
games, while the non-Deep Learning one had a solving rate
of only 10%

The binary classifier’s success is explainable by these
propositions being decorrelated with the validity of an ac-
tion, even when very frequent, and this translates in having
a low feature importance score. Fundamentally, the intersec-
tion method fails here because it does not use invalid actions
to gather knowledge.

5 Conclusion
Operators knowledge can be obtained from few formatted
states, even with a significant amount of noise. Lifting the
state observations can benefit greatly the models, in terms of
generalization, and noise resilience. The learning of effects
benefit from exact labels that are the difference between two
consecutive states. As for the preconditions, no fail-proof
solution exist, we presented two different methods, a first
very data-efficient, but lacking the ability to solve all prob-
lems, and a second, theoretically more universal, but relying
on some unstable techniques – Deep Neural Networks with
noisy labels and Feature Importance.

Finally, we proved empirically that Neural Networks can
bring a real benefit to operators learning, both in terms of
theoretical capabilities, and noise resilience, and proved those
findings empirically on the problem of the Tower of Hanoi.



References
[Aineto et al., 2018] Diego Aineto, Sergio Jiménez, and

E. Onaindia. Learning strips action models with classi-
cal planning. Twenty-Eighth International Conference on
Automated Planning and Scheduling (ICAPS 2018), 2018.

[Asai and Fukunaga, 2017] Masataro Asai and Alex Fuku-
naga. Classical planning in deep latent space: Bridging
the subsymbolic-symbolic boundary. Thirty-Second AAAI
Conference on Artificial Intelligence, 04 2017.

[Breiman, 2001] Leo Breiman. Random forests. Machine
Learning, 45(1):5–32, 2001.

[Cresswell and Gregory, 2011] Stephen Cresswell and Pete
Gregory. Generalised domain model acquisition from ac-
tion traces. Twenty-First International Conference on Au-
tomated Planning and Scheduling (ICAPS 2011), 6 2011.

[Cresswell et al., 2013] Stephen Cresswell, T. Mccluskey,
and Margaret West. Acquiring planning domain models
using locm. The Knowledge Engineering Review, 28, 06
2013.

[Dulac-Arnold et al., 2019] Gabriel Dulac-Arnold, Daniel
Mankowitz, and Todd Hester. Challenges of Real-World
Reinforcement Learning. arXiv, 2019.

[Evans and Grefenstette, 2017] Richard Evans and Edward
Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61, 11 2017.

[Ge and Mooney, 2009] Ruifang Ge and Raymond Mooney.
Learning a compositional semantic parser using an exist-
ing syntactic parser. Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing
of the AFNLP, pages 611–619, 08 2009.

[Herzig et al., 2018] Roei Herzig, Moshiko Raboh, Gal
Chechik, Jonathan Berant, and A. Globerson. Mapping
images to scene graphs with permutation-invariant struc-
tured prediction. ArXiv, abs/1802.05451, 2018.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[Schrittwieser et al., 2019] Julian Schrittwieser, Ioannis
Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by
planning with a learned model, 2019.

[Silver and Chitnis, 2020] Tom Silver and Rohan Chitnis.
Pddlgym: Gym environments from pddl problems, 2020.

[Yang et al., 2007] Qiang Yang, Kangheng Wu, and Yunfei
Jiang. Learning action models from plan examples us-
ing weighted max-sat. Artificial Intelligence, 171(2):107
– 143, 2007.

[Zhuo et al., 2019] Hankui Zhuo, Jing Peng, and Subbarao
Kambhampati. Learning action models from disordered
and noisy plan traces. ArXiv, abs/1908.09800, 2019.

[Łukasz Kaiser et al., 2020] Łukasz Kaiser, Mohammad
Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Camp-
bell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn,
Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski.
Model based reinforcement learning for atari. In In-
ternational Conference on Learning Representations,
2020.


	Introduction
	Problem setting and formulation
	Operators
	Lifting of an action

	Learning of the operators
	Operator effects
	Operator preconditions

	Results
	Grounded or Lifted Representations
	Results for the effects
	Results for the preconditions

	Conclusion

