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Abstract

Human-in-the-loop  Reinforcement  Learning
(HRL) adds human feedback to RL algorithms.
Policy Shaping [Griffith et al., 2013], an HRL
algorithm, uses human feedback to influence a
learning agent’s policy. We extend this work to
continuous, high-dimensional state spaces using
Deep Reinforcement Learning (RL) and test in
simulation. Our algorithm, Deep Policy Shaping
(DPS), learns a generalized feedback neural
network that models the ground truth optimality
of binary feedback as a latent random variable
and combines that output with any off-policy RL
algorithm. In simulated experiments, we find that
DPS outperforms or matches baselines on average
over multiple hyperparameter settings and varying
levels of feedback correctness.

1 Introduction

Reinforcement learning has become increasingly effective in
continuous and high dimensional state spaces by leveraging
deep neural networks [Mnih et al., 2015]. The addition of hu-
man teachers to the reinforcement learning process allows for
increased sample efficiency. Many methods of using human
feedback to assist in the reinforcement learning process have
also made the leap to large state spaces [Warnell er al., 2018;
Xiao et al., 2020; Arakawa et al., 2018; Arumugam et al.,
2019]. However, many of these methods either only use hu-
man feedback without a reward function, use the feedback to
shape the reward, or do not consider the correctness of feed-
back. Teachers may be able to give correct feedback to the
robot throughout a majority of a task, but if a percentage of
their feedback is wrong it can negatively effect the robot’s
learning. In the worst case, it can lead the robot to learn the
task incorrectly. Policy Shaping [Griffith et al., 2013] uses
potentially noisy feedback to inform the policy, rather than
reward function, of an RL agent in countable state spaces. In
this work we extend Policy Shaping to continuous and high
dimensional state spaces.

Some methods of HRL interpret human feedback as pro-
portional to a human-defined reward function [Warnell et al.,
2018; Xiao et al., 2020; Arakawa et al., 2018] or as a measure
of how much the policy deviates from the policy desired by

the user [Arumugam et al., 2019]. We introduce Deep Policy
Shaping (DPS), a method that combines information from a
feedback-generalizing neural network with any off-policy RL
algorithm. DPS learns concurrently from feedback and envi-
ronmental rewards (Figure 1). To incorporate the consistency
of the human’s feedback, we model the ground truth optimal-
ity as a latent random variable that determines the distribution
for human feedback for a particular state-action pair. This
allows us to use techniques from research on deep learning
with noisy labels, specifically modifying the loss function to
reflect our confidence in the feedback given by the user [Mnih
and Hinton, 2012].

We chose neural networks to generalize the insight gained
from feedback because of their ability to learn task-specific
feature extraction from data. This is related to the idea of us
using feedback in the first place in that it is easier for a non-
expert end user of DPS to give feedback rather than design
a reward function. Similarly, when learning from images, or
comparably high dimensional state spaces, many “shallow”
generalization methods require manually defined feature ex-
traction to be performed on the state beforehand. In the case
of images, this requires significant computer vision knowl-
edge and experience while other state spaces require analo-
gous expertise.

We compare DPS to baselines on the OpenAl [Brockman
et al., 2016] and Mujoco’s [Todorov et al., 2012] Reacher-v2
environment, varying the percentage of feedback labels that
are correct. As DPS is designed to work with human teachers,
optimizing hyperparameter settings prior to learning may be
impossible. We find that DPS outperforms or matches the
baselines, particularly when hyperparameter settings are not
tuned.

2 Background

Some prior work in the field of HRL replaces the reward func-
tion with human feedback [Knox and Stone, 2009; Warnell et
al., 2018], or uses human input to shape an existing envi-
ronmental reward function [Xiao et al., 2020]. The TAMER
framework [Knox and Stone, 2009], expanded to deep learn-
ing in [Warnell er al., 2018], learns a human reward func-
tion from feedback, which the agent then learns from in place
of an environmental reward function. The FRESH algorithm
similarly learns a human reward function from feedback, and
an agent learns from the sum of the scaled, estimated human
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Figure 1: Deep Policy Shaping Pipeline.

reward and the environment reward [Xiao et al., 2020]. Dif-
fering from both, DPS interprets human input as feedback on
the policy, rather than a reward.

There is existing prior work on interpreting human input as
policy feedback. DPS is directly inspired by the original Pol-
icy Shaping algorithm, which enables efficient RL in discrete
spaces using human feedback [Griffith ez al., 2013]. COACH
[MacGlashan er al., 2017] and Deep COACH [Arumugam et
al., 2019] both use the similarity of human feedback to the
advantage function of an MDP. This similarity is applied di-
rectly to an actor-critic method, with human feedback taking
the place of advantage in the gradient update. Deep COACH,
unlike DPS, does not integrate environment feedback and
rather only learns the human desired policy, regardless of op-
timality. One of the methods of integrating TAMER signal
with RL tested in [Knox and Stone, 2010] was extended to
Deep TAMER and a Deep Q Network by [Arakawa et al.,
2018]. Like DPS, their approach modified the policy of the
RL agent; however, it differs in the loss function used to gen-
eralize feedback and how it integrated said generalized feed-
back with the RL agent.

There has already been considerable research done into
learning from noisy labels. [Mnih and Hinton, 2012] showed
a neural net trained with a loss function that modeled noise
as an asymmetric Bernoulli outperformed a neural net trained
with binary cross entropy loss in the classification of pixels
from aerial images. Their approach relied on a priori infor-
mation on the probability of label flip noise. There is previous
work on learning from noisy labels in RL [Lin et al., 2017;
Sridharan, 2011; Kurenkov et al., 2019]. [Sridharan, 2011]
utilized bootstrapping and an ensemble of policies to estimate
the consistency of a human-reward-defined policy with the
optimal policy and weight its influence appropriately. [Lin et
al., 2017] utilize online updates to the probability of listening
to advice given by a potentially incorrect teacher, also based
off of consistency with actions learned by the RL agent to that
point. Neither [Sridharan, 2011] nor [Lin et al., 2017] con-
sider the issue of generalizing the human feedback received
to use in states where the human has not provided feedback
before as DPS does.

3 Method

3.1 Policy Shaping

Policy Shaping arose from the observations that humans give
feedback with the intention of guiding behavior [Thomaz and
Breazeal, 2008] and that integrating human feedback with RL
methods via influencing behavior outperforms other forms of
integration [Knox and Stone, 2010]. Unlike prior methods of
integrating human feedback with RL models, Policy Shaping
interprets feedback as a statement on the optimality of an ac-
tion in a specific state [Griffith et al., 2013]. It then uses that
interpretation to compute the probability of the optimality of
a state-action pair from feedback. Assuming a uniform prior
on the optimality of actions, the probability is computed as
follows:

CAsa
OB (1 - C)Bee

where s, a are the state and action respectively, C' is the con-
sistency of the feedback with the true optimality of ¢ in s, and
A, o is the difference between the positive and negative feed-
back given on action a in state s and D is all the feedback
received by the agent. This distribution is then multiplied
together with the distribution created by the RL agent in or-
der to shape exploration, since multiplying distributions is the
Bayes optimal method of combining information from condi-
tionally independent sources [Griffith et al., 2013]. Note, the
computing the probability of optimality requires feedback to
have been given for that state action pair, otherwise the equa-
tion reduces back to the uniform prior. However, in contin-
uous and high dimensional state spaces, multiple instances
of feedback being given in the same state is unlikely at best.
This motivates Deep Policy Shaping.

P(ais optimal|s, a, D) = (D)

3.2 Feedback Generalization

We use a neural network to approximate the conditional
probability of an action’s optimality in a state given the
user’s feedback. The state is given as input to the network.
Since we assume any number of actions can be optimal in a
given state, we treat the problem as a multi-label classifica-
tion problem and use a different sigmoid head to represent
P(a is optimal|s, a, D) for each action.

Deep Ensembles with Shared Parameters

Because Policy Shaping uses its estimate of the optimality of
an action to scale the distribution with which a RL algorithm
explores the state space, it is important that the feedback neu-
ral network accurately represents areas it is uncertain about.
[Lakshminarayanan et al., 2016] showed that deep ensembles
increase the quality of uncertainty in prediction, outperform-
ing Monte Carlo dropout. To save on computation, we utilize
a shared base for our ensemble. [Lee et al., 2015] showed
that TreeNets, as they dubbed them, performed as well as full
ensembles in terms of accuracy. FRESH also utilizes a neural
net with multiple heads sharing a base [Xiao et al., 2020].

Loss Function Modification

In order to account for a priori information on the consis-
tency of the human’s feedback with the true optimality of an
action in a given state, we model the ground truth optimality



H P DPS TAMER DQN DPS vs DQN TAMER vs DQN  DPS vs TAMER ANOVA H
1 15763951.1 14200672.6 13547898.6  p < 0.005 p = 0.074244 p < 0.005 p < 0.001
0.75 14139224.6 13625897.1 13547898.6 p = 0.068316 p = 0.899995 p=0.129681  p = 0.054321

0.6 13334046.4 127132589 13547898.6 p = 0.697596 p < 0.01 p = 0.064097 p < 0.01

Table 1: The mean, averaged over 100 random hyperparameter settings, area under the curve for each algorithm at the indicated level of
feedback consistency, with p-values for the ANOVA and post-hoc Tukey HSD tests. TAMER refers to DQN-TAMER.

as a latent random variable and derive the likelihood that our
estimate of the probability of optimality produced the ground
truth at that point. This allows us to construct a loss function
that accounts for the noise in the human’s feedback.

We model the feedback h as a random variable that is con-
sistent with the true optimality with probability C'. Here y is
the probability that the action we are concerned with is opti-
mal in the state given. From our formulation of the problem,
we can derive the likelihood of y given h.

L(ylh) =yC* 1 - C) "+ (1 - y)C" 1 -O)" (@)

As with standard binary cross entropy loss, we can take the
negative of the log-likelihood to use as our loss function for
optimization.

L(y,h) = —log (L(y|h)) 3

We can see that the derived likelihood and loss function we
derived has some properties that we would expect it to have:
it reduces to normal cross entropy loss as C' — 1, it reduces
to cross entropy loss with the labels flipped as C' — 0, and
matches the original Policy Shaping in the discrete case. The
first two can be seen just by taking the limit of L(y, h) as C
goes to 1 or O respectively. The third comes from the fact
that we can also interpret L(y|h) as P(hly). We can then
compute P(h|ly = 1) and P(hly = 0). From that point the
same derivation for the probability of optimality of an action
used in discrete Policy Shaping applies.

3.3 Integration with Reinforcement Learning

Deep Policy Shaping is meant to shape the exploration of any
off-policy RL algorithm. For all the experiments we utilize
a Deep Q Network (DQN) for our RL component [Hasselt
et al., 2016] and Boltzmann exploration for our exploration
function. The hyperparameters for the DQN also remain con-
sistent throughout our experiments with a learning rate of
0.0001, target network update every 2500 time steps, and the
Boltzmann exploration temperature decaying with time ac-
cording to the following equation:

T(t) = 0.05 + (100 — 0.05)e 5000 @

Even with the consistency modification to the loss func-
tion, our neural network still risks overfitting the potentially
noisy feedback. To avoid adverse effects, we reduce the ef-
fect that the distribution has on the outcome over time by
clamping the outputs of the distribution to within the range
[0.5 — 3,0.5 + 8] where 8(t) = 0.5 * o' and « is a hyperpa-
rameter from (0, 1) which controls the rate of reduction. Like
discrete Policy Shaping, DPS combines the distribution over
actions created by the RL algorithm with the estimate of the

optimality distribution by multiplying them together [Griffith
etal.,2013]:
TXTR X TR %)

Where 7r is the policy distribution computed from the Q-
values and exploration function of the DQN agent and 7 are
the probabilities of optimality for each of the actions com-
puted from the feedback network. Since the only element of
the RL algorithm that DPS uses is the action distribution, it
can be applied to any off-policy RL algorithm that produces
an action distribution. Once the distributions are multiplied
together and normalized, the action is sampled from the re-
sulting distribution.

3.4 Experimental Design

We use OpenAl [Brockman et al., 2016] and Mujoco’s
[Todorov et al., 2012] Reacher-v2 environment to evaluate
DPS, as shown in Figure 2. Since our neural network de-
sign limits us to discrete action spaces, we discretize the state
space to consist of 5 actions: idle, center joint clockwise, cen-
ter joint counter clockwise, elbow joint clockwise, and elbow
joint counter clockwise. Aside from idle, these actions all ap-
ply an equal amount of torque to their respective joint, accel-
erating or decelerating the arm in their respective directions.
We removed the penalty for high torque actions, as done by
[Christiano er al., 2017], since all actions except idle used
the same amount of torque, and torque is difficult for users
to interpret when providing feedback. We also use a sparse
reward signal, with the robot receiving rewards of 1 when it
is within 0.015 of the goal, and rewards of zero otherwise.
Each episode ends after 50 actions. We compare to DQN-
TAMER [Arakawa et al., 2018], the closest method to DPS
to our knowledge, and a DQN.

Figure 2: Reacher-v2 Environment [Todorov et al., 2012]

To simulate human feedback, we use a pretrained DQN as
an oracle. This uses the assumption that a user will give feed-
back as a label of action optimality. This oracle gives posi-
tive feedback when an action has a Q-value within 2.5% of
the highest Q-value in the state. In the case of DPS, positive
feedback is given as label 1, and negative feedback is given
as label 0, whereas for DQN-TAMER negative feedback is



labeled as -1. While DQN-TAMER can take scalar feedback
rather than just binary, we give only 1 and -1 as feedback for
consistency. The oracle gives feedback to the agent and the
feedback networks are trained every 10 time steps starting at
0. Feedback completely stops at 10000 time steps, at which
point the feedback network training reduces to once every 50
time steps.

We evaluate both DPS and DQN-TAMER against a DQN
in two ways. First, we compare the performance of the
best-performing hyperparameters over a search of ten hyper-
parameter settings, chosen using a random search [Bergstra
and Bengio, 2012]. Each hyperparameter setting is judged
by averaging the area under curve over 10 executions. We
sample the hyperparameters exponentially from a range de-
cided by prior manual exploration: for range [z, y] we draw
a value uniformly from [log(z),log(y)] and exponentiate
it. We sample the learning rate for the feedback networks
from [0.05,0.00005], the I5 regularization of the feedback
networks from [0.01,0.00001], and the base for attenua-
tion o from [0.99997,0.999997]. For DQN-TAMER, we set
ap(t) = o' and oy (t) = 1 — ay(t), the weighting used in
[Knox and Stone, 2010]. Similar to DPS, the «;, and ag hy-
perparameters for DQN-TAMER control how the influence of
human feedback decays over the course of the learning pro-
cess (ap,), and how weighted the Q-function is ().

Second, we compare the average performance of each al-
gorithm over 100 hyperparameter settings chosen through
random search, each run for one execution. We do this as
in practice, HRL algorithms such as DPS and DQN-TAMER
would likely see little to no hyperparameter optimization due
to the significant cost of obtaining human feedback.

For both of these experiments, we repeat over varied cor-
rectness of feedback. We apply noise to all states and actions
uniformly. Each feedback is flipped with some probability
1— P, P €]0.6,0.75,1.0]. For each experiment, we set the
consistency hyperparameter for DPS, C' = P. DQN-TAMER
does not define oy (t) and oy (t) in regards to feedback ac-
curacy, so for all values of P we still sample o exponen-
tially from the range [0.99997,0.999997] and define o, (¢)
and o, () the same way with regard to . As P decreases,
changing either the range « is drawn from or defining o, (¢)
and oy, (t) differently may improve performance. Future work
will include running experiments to determine the best value
of « and definition of ay(t) and «,(t) for each correctness
setting. However, this would involve hyperparameter search
over a substantially larger space which, due to the substan-
tial cost of human feedback, makes tuning for the potential
increased performance expensive in practice. In comparison,
DPS provides its user a way to integrate a priori knowledge
of feedback correctness without increasing the size of the hy-
perparameter search space.

4 Results and Discussion

4.1 Best Performing Hyperparameters

In all graphs, the y-axis is the mean cumulative reward at
each time step, and the shaded area shows the range over all
10 runs. All significance values are calculated using a one
way ANOVA with post-hoc Tukey HSD test. For P = 1,
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Figure 3: Comparison between best performing hyperparameters.
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shown in Figure 3a, the ANOVA produced a significant p-
value of 0.013. DPS has an area of 18236783.75 under the
curve, whereas DQN-TAMER and the DQN have areas of
16932102.5 and 13547898.6 respectively. DPS and DQN-
TAMER both significantly outperform the DQN (p < 0.005
for both). DPS gives a 7.7% increase over DQN-TAMER,
although this is not significant (p = 0.141).



For P = 0.75, shown in Figure 3b, the ANOVA pro-
duced an insignificant p-value of 0.054. DPS has an area
of 15639707.5 under the curve, whereas DQN-TAMER and
the DQN have areas of 13688177.5 and 13547898.6 respec-
tively. DPS significantly outperforms the DQN (p < 0.005).
DQN-TAMER also outperforms the DQN, but not signifi-
cantly (p = 0.9). DPS gives a 14.2% significant increase
over DQN-TAMER (p < 0.05).

For P = 0.6, shown in Figure 3c, the ANOVA pro-
duced a significant p-value of 0.013. DPS has an area of
14396098.75 under the curve, whereas DQN-TAMER and
the DQN have areas of 15023776.25 and 13547898.6 re-
spectively. DPS outperforms the DQN but not significantly
(p = 0.2408), while DQN-TAMER significantly outperforms
the DQN (p < 0.05). DPS has a slight 4.2% decrease from
DQN-TAMER, but this result is not significant (p = 0.6354).

These results show that with tuned hyperparameters, DPS
can match or outperform the DQN and DQN-TAMER. These
improvements increase when the correctness is decreased to
75%, but decrease when at 60%. This may be because DPS
is able to use C to leverage the useful information when feed-
back is not entirely correct, but 60% correctness is close to
50%, which gives no additional information over a DQN.

4.2 Average Hyperparameter Performance

All results are shown in Table 1, with significance values cal-
culated using a one way ANOVA with post-hoc Tukey HSD
test. With P = 1, DPS significantly outperforms DQN-
TAMER on average. Both DPS and DQN-TAMER outper-
form the DQN alone, DPS significantly so. With the feed-
back correctness reduced to P = (.75, DPS outperforms both
DQN-TAMER and the DQN but not significantly so. DQN-
TAMER also does not significantly outperform the DQN.
With P = 0.6, DQN-TAMER lowers the performance of the
agent more on average than DPS does, in fact the decrease
in performance from the DQN alone to DQN-TAMER is a
significant one. DPS has a higher AUC than DQN-TAMER,
but this difference is not significant. These results suggest
that DPS matches or outperforms DQN-TAMER over many
hyperparameter settings. This result is useful when the hy-
perparameter settings cannot be tuned.

5 Conclusion and Future Work

In this work, we introduce the DPS algorithm and show that it
outperforms or matches a baseline DQN and DQN-TAMER
on a simulated task over various settings of feedback correct-
ness, particularly when averaged over multiple hyperparame-
ter settings, which can rarely be tuned prior to training. Using
DPS will enable robots to learn from people with varying lev-
els of feedback quality.

A high level drawback in our approach is the amount of
data necessary to train neural networks. There are some
things approaches that can be done to mitigate this cost, such
as the autoencoder pretraining [Warnell et al., 2018] and ap-
plying a single piece of feedback to multiple states [Warnell
et al., 2018; Arumugam et al., 2019]. Applications of these
techniques to DPS could be studied in the future. Another po-
tential method of reducing the total feedback needed is adding

active learning to DPS which could also be explored in future
work.

Although the design of our oracle was based off of insights
about how humans provide feedback [Thomaz and Breazeal,
2008], it is still just an approximation of human behavior.
Future work will evaluate DPS with feedback from humans
and in comparison to other HRL algorithms.
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